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Abstract

Typed functional programming and units of measure are a natural
combination, as F# ably demonstrates. However, encoding statically-
checked units in Haskell’s type system leads to inevitable disap-
pointment with the usability of the resulting system. Extending the
language itself would produce a much better result, but it would be a
lot of work! In this paper, I demonstrate how typechecker plugins in
the Glasgow Haskell Compiler allow users to define domain-specific
constraint solving behaviour, making it possible to implement units
of measure as a type system extension without rebuilding the com-
piler. This paves the way for a more modular treatment of constraint
solving in GHC.

Categories and Subject Descriptors 1D.3.3 [Programming Lan-
guages]: Language Constructs and Features; F.3.3 [Logics and
Meanings of Programs): Studies of Program Constructs

Keywords Dimensions, type inference, modular typechecking

1. Introduction

Dimensions (such as length and time) and units of measure (such
as metres, feet and seconds) are a very useful mechanism to reduce
the chances of making a costly error', and make it easier to perform
calculations. As Kennedy (2010) put it, “Units-of-measure are to
science what types are to programming.” It is natural, therefore,
to consider the extension of typed programming languages with
support for units of measure. At a minimum, such support should
allow the programmer to declare the units of quantities, and prevent
them making errors such as adding incompatible quantities.

There has been much work in this direction, notably by Kennedy
(2010) in the context of the F# functional programming language. He
has shown that units of measure fit particularly well with Hindley-
Milner type inference, leading to a simple but powerful system.

Tt is traditional here to cite the Mars Climate Orbiter, or the Gimli Glider
(http://lamar.colostate.edu/"hillger/unit-mixups.html).

For example, in F# one can write

> [<Measure>] type m;;

> [<Measure>] types;;

> let time  =3.0(s);;

> let speed = 5.0(m/s);;

> let distance = time * speed; ;

and the system will correctly infer the units of distance:
val distance : float(m) = 15.0

In addition, Kennedy’s system supports unit polymorphism: def-
initions can be checked abstractly, with the concrete units being
determined at the use sites. For example, one can define the function

> let sgr (z :float(_)) = = * z;;
val sgr: z : float{u) — float{u"2)

which is polymorphic in a unit variable u. The type annotation on
the definition is necessary because overloaded arithmetic operators
in F# do not have units by default.

Modern GHC Haskell supports a range of language features (in
particular, type families) that make it possible to encode quite
complex properties at the type level. Correspondingly, in the Haskell
world there have been various attempts to encode units of measure,
in particular the robust and expressive units library by Muranushi
and Eisenberg (2014). This allows one to write?

time = 3.0% [si|s]|]
speed  =5.0% [si|m/s]]
distance = time & speed

although the inferred type of distance is not F#’s float(m) but
distance :: Qu [F Length One] DefaultLCSU Double .

This work is an impressive demonstration of advanced type-level
Haskell programming that provides a very expressive system, but it
is inevitably limited by the GHC features available to programmers.
The main limitations are the inferior type inference behaviour and
error messages produced by units of measure libraries compared to
genuine language extensions (as in F#).

How might we go about extending the Haskell language, as imple-
mented in GHC, with units of measure? Ideally, we want a modular
design that does not unnecessarily bake features into the compiler,
and allows their impact on the type system to be understood in isola-
tion. Moreover, the development effort required to extend GHC with
a new feature is substantial. It would be much better if we were able
to plug in support for units of measure to the typechecker, without
changing GHC itself.

2 Provided [si| - |] is defined as a quasiquoter for SI units, so for example
[si| m/s|] represents metres per second as a unit.
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1.1 Type-Level Arithmetic

Additional motivation for being able to extend the typechecker
comes from another desirable GHC extension: increasing the auto-
mated reasoning available to users of type-level arithmetic. For some
time, thanks to the work of Tavor Diatchki®, it has been possible to
use natural number literals and arithmetic operators in types. For
example, one can define vectors (lists indexed by their length):

data Vec a (n :: Nat) where
Nil ::VecaO
Cons::a — Vecan — Veca (1+n)
my Vec :: Vec Char 3
myVec = Cons *a’ (Cons b’ (Cons ¢’ Nil))
vhead :: Vec a (14+n) — a
vhead (Consz _) = x

However, further progress is stymied by the lack of support for
working with numeric variables. While vhead works,

vtail ::Vec a (1+n) — Vecan
vtail (Cons _ xs) = xs

is not accepted by GHC 7.8.3, because it does not know that (1+)
is an injective function:

Could not deduce (nl ~ n)
from the context ((1 + n) ~ (1 + n1))
bound by a pattern with constructor Cons
. in an equation for ‘vtail’

It would be nice if the typechecker was able to prove more equa-
tions, using domain-specific knowledge about arithmetic. One pos-
sibility is to interface GHC to an SMT solver, so that the SMT
solver can solve arithmetic equations left unsolved by GHC (see sec-
tion 5.3). The ghc-typelits-natnormalise® typechecker plugin,
and the inch preprocessor (Gundry 2013), demonstrate alternative
approaches based on normalisation.

1.2 Compiler Plugins

Max Bolingbroke and Austin Seipp implemented support for com-
piler plugins in GHC version 7.2.1°. Inspired by a similar concept in
the GNU Compiler Collection (GCC), they were originally intended
for adding custom optimisations and analyses of GHC’s internal
Core language (System Fc). The basic idea is that a user package
(distributed separately from GHC itself) contains a module M that
exports a symbol plugin belonging to the type Plugin defined in
the GHC API. Users can invoke GHC with an additional argument
-fplugin=M, whereon the module will be dynamically linked into
the running compiler, and invoked during compilation.

Crucially, plugins allow new compiler functionality to be added
separately from the main development effort. This makes feature
development quicker, as the entire system need not be recompiled
when a plugin is changed, and makes it easier for programmers who
are not compiler developers to contribute to and use plugins.

3https://ghc.haskell.org/trac/ghc/wiki/TypeNats

“https://hackage.haskell.org/package/
ghc-typelits-natnormalise

Shttps://downloads.haskell.org/~ghc/7.2.1/docs/html/
users_guide/compiler-plugins.html

1.3 Summary

In the sequel, I will first describe uom-plugin,® a Haskell library
for units of measure, then explain the typechecker plugins feature
that makes it possible. lavor Diatchki, Eric Seidel and I implemented
this feature in GHC 7.10.1.7 I will specify typechecker plugins in
general, and the constraint-solving algorithm used by uom-plugin
in particular, using the OutsideIn(X) type inference framework.

Concretely, the contributions of this paper are:

e a design for a units of measure library with good type inference
properties, showing the need for domain-specific constraint
solving behaviour in the typechecker (section 2);

e an explanation of the typechecker plugins interface that enables
constraint solver extension, both informally in Haskell and
formally by relating it to OutsideIn(X) (section 3); and

e an algorithm for solving constraints in the equational theory of
free abelian groups, which satisfies the properties required for
sound and most general type inference (section 4).

Section 5 compares the resulting units of measure system to other
approaches in F# and Haskell, and section 6 concludes with a
discussion of future directions for this work.

2. Units of Measure

First, I will describe how to extend the language with the syntax of
units of measure, then will go on to discuss their semantics.

2.1 The Syntax of Units and Quantities

A typical approach to units of measure in programming languages
is to annotate numeric types with their units, such as the int(-) and
float(-) type constructors in F#. In Haskell, the natural way to do
this is through the definition

newtype Quantity a (u :: Unit) = MkQuantity a

which makes Quantity a u use the same runtime representation as
the underlying (typically numeric) type a, but tagged with a phantom
type parameter (Leijen and Meijer 1999) v of kind Unit. This means
that using Quantity a « has no runtime overhead compared to using
plain a, but it can have additional safety guarantees.

The Unit datatype is lifted to the kind level via datatype promotion
(Yorgey et al. 2012). It has no constructors, but instead is accompa-
nied by the following type-level definitions, implemented as type
families without any equations:

Base :: Symbol — Unit

1 :: Unit -- One in ASCII
(®) ::Unit — Unit — Unit -- *: in ASCII
(@) ::Unit — Unit — Unit -~ /: in ASCII

Base creates base units, which are represented as type-level strings
(of kind Symbol) for simplicity. Dimensionless quantities are rep-
resented with 1, and the operators allow more complex units to
be formed. Representing them as type families with no equations
means they are essentially opaque symbols that may not be partially
applied and are not injective; this avoids the equational theory of
units conflicting with GHC’s built-in equality rules for types.

Shttps://github.com/adamgundry/uom-plugin

"https://downloads.haskell.org/~ghc/7.10.1/docs/html/
users_guide/compiler-plugins.html#typechecker-plugins
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2.1.1 Constructing Quantities

Crucially, the MkQuantity constructor should not be used by client
code, so that users of library work with a unit-safe interface. If the
constructor were available, users could write code like this, which
would destroy all unit safety guarantees provided by the library:

unsafeConvertQuantity :: Quantity a u — Quantity a v
unsafeConvertQuantity (MkQuantity z) = MkQuantity =

Of course, users need some way to produce and consume quantities,
i.e. convert between a and Quantity a w. It is fine for the library to
expose

unQuantity :: Quantity a u — a
unQuantity (MkQuantity z) = z

but not
MkQuantity :: @ — Quantity a u
as their composition yields unsafe ConvertQuantity.

The real problem here is that MkQuantity should only be monomor-
phic (sometimes known as ‘weakly polymorphic’) in its unit. It is
fine for u to be any concrete unit, but it must not be generalised over
to become a universally quantified type variable. Such variables are
permitted in types in Caml (Garrigue 2004), but not in Haskell.

As a workaround, the library offers a Template Haskell quasiquoter
[u| - |] that enables the user to write concrete quantities in a conve-
nient syntax, translating them into safe applications of MkQuantity:

mass = [u] 65 kg |]

g  =[u|9.808m/s"2|] --equivalentto m/(s*s)
For example, mass translates into

MkQuantity 65 :: Quantity a (Base "kg")

Bare numeric literals are interpreted as dimensionless constants by
the quasiquoter, except for zero, which is polymorphic in its units:

a = [u]0.00729735|] :: Quantity Double 1
zero = [u] 0] :: Quantity Double u
Omitting the numeric value yields a specialisation of MkQuantity to

the appropriate type, which is useful when units need to be attached
to numeric values that are not literal constants, for example:

readMass :: 10 (Quantity Double (Base "kg"))
readMass = fmap [u| kg || readLn

2.1.2 Arithmetic Operations on Quantities

The library includes the following (written +: and *: in ASCII):

(®) :: Num a =

Quantity a u — Quantity a v — Quantity a u
MkQuantity z @& MkQuantity y = MkQuantity (z + y)
(®) :: Num a =

Quantity @ u — Quantity a v — Quantity a (u ® v)
MkQuantity z ® MkQuantity y = MkQuantity (z * y)

The (@) and (®) operators on quantities are analogous to the (+)
and (x) operators on numbers, except that the phantom parameter
makes sure the units are kept in order. Quantities may be multiplied
regardless of their units, but may be added only if the units match.®

8 Unfortunately this means that Quantity a u cannot be an instance of the
standard Haskell Num typeclass, which bundles addition, subtraction and
multiplication together. An instance may be given only for Quantity a 1.

For example, if we have some values

mass  :: Quantity Double (Base "kg")
distance :: Quantity Double (Base "m")

then we can we define

prod :: Quantity Double (Base "kg" ® Base "m")
prod = mass ® distance

but attempting to add mass to distance gives a type error:

Couldn’t match type ‘Base "m"’ with ‘Base "kg"’

Expected type: Quantity Double (Base "m"
Actual type: Quantity Double (Base "kg")

In the first argument of ‘(+:)’, namely ‘mass’

In the expression: mass +: distance

In addition to addition and multiplication, similar definitions are
given for other standard numeric operations such as negation,
division and square root. Since fractional units are not supported,
the type of the latter is

sqrt :: Floating a = Quantity a (v ® u) — Quantity a u

The user can define their own numeric primitives by accessing the
internal MkQuantity constructor directly. They are then responsible
for ensuring unit safety of the resulting code.

2.2 The Equational Theory of Units

Are we done? Not quite. Our definitions so far allow us to write
the syntax of units of measure, but we have not accounted for
their equational theory. We would expect quantities with the units
Base "kg" ® Base "m" and Base "m" ® Base "kg" to be
interchangeable; unit multiplication should be commutative. But
adding mass ® distance to distance ® mass gives:

Couldn’t match type ‘’Base "m" *: ’Base "kg"’
with ¢’Base "kg" *: ’Base "m"’
NB: ‘*:’ is a type function,
and may not be injective
Expected type:
Quantity Double (’Base "kg" *: ’Base "m")
Actual type:
Quantity Double (’Base "m" *: ’Base "kg")
In the second argument of ‘(+:)’, namely
‘(distance *: mass)’
In the expression:
(mass *: distance) +: (distance *: mass)

In addition to the usual GHC Haskell rules for type equality
(Sulzmann et al. 2007), we would like additional equations to hold
to characterise the operations. As in Kennedy’s system in F#, these
equations are the standard laws of an abelian group:

Vuv.(u®@v)®w) ~ (u®(vew))
Vuv.(u®wv) ~ (v®u)
Vuv.(u®1l) ~ U
Vuv.(u®(1lou) ~1

But how can we make them hold? GHC allows new axioms to be
introduced using a type family, but type families (like functions)
may pattern match only on constructors, not other type families, in
the interests of checking consistency and termination of constraint
solving (Schrijvers et al. 2008). In any case, type families are
typically useful only if they define a terminating rewrite system,
but associativity and commutativity are hardly going to do so!



2.2.1 An Attempted Solution

This is the point where most Haskell units of measure libraries give
up on providing exactly the desired equational theory given above.
Instead, a common approach is to write a normalisation function for
concrete unit expressions (typically implemented as a type family).
Provided one is very careful to talk only about equality of normal
forms, not the original syntax of unit expressions, this allows some
of the desired behaviour. For example, the units package defines
addition of quantities with this type:’

(8) :: (d1 @~ dz,Num n) =
Qudiln—=Qudaln—=Qudiln

The constraint d; @~ d2 means that d; and dz should be compared
up to equality of normal forms, a weaker condition than d1 ~ do,
which would require d; and da to be equal in GHC’s equational
theory. This weaker constraint means that GHC can determine that
kg * m and m * kg have the same normal form, and hence quantities
with those units may be added.

Unfortunately, this has rather drastic consequences for error mes-
sages, because they are expressed in terms of normal forms. In
units, the erroneous addition gives this:

Couldn’t match
type ‘[F Mass One, F Length (P Zero)]’
with ‘[]°

In the expression: mass |+| distance

Apart from introducing yet another equivalence relation for the user
to understand, and mystifying them with error messages, we lose
something important in the shift from () to (H): well-behaved
unit polymorphism. The normalisation approach breaks down when
there are variables or other non-canonical unit expressions present.
It cannot conclude that « [ v is interchangeable with v & u, because
it cannot compute the normal form of variables such as u and v.
If we are lucky, we may be able to postpone the constraint until
we have concrete values for the variables, and hence get away with
only some messy types. If not, we may not be able to write the
unit-polymorphic program we want.

For example, one would like the following function to be accepted
with this type signature (or without it)

f:Num a =
Quantity @ u — Quantity a v — Quantity a (u ® v)
fry=(@oy) & (y®)

but the units approach leads to an inferred type like this, involving
several internal type families used to implement normalisation:

(Num a
,[] ~ Normalize (Normalize (d; @Q+ Reorder d2 d1)
@— Normalize (d2 @Q+ Reorder d; d2))
)= Qudila—Qudsla
— Qu (Normalize (d; @@+ Reorder dz d1)) I a

The crucial observation of this paper is that we need to introduce
support for a domain-specific equational theory. In the following
section, we will see how this is possible.

9 Instead of annotating quantities Qu with units directly, the units package
uses a combination of dimension (d) and local coherent system of units (1);
the difference is discussed in section 5.2.

Boxed operators are definitions from units, to distinguish them from the
circled operators of uom-plugin. B is written |+| in ASCII.

3. Domain-Specific Constraint Solving

Haskell type inference is essentially a problem of generating and
solving constraints. These may be equalities, which arise from the
typing rules (e.g. in the application f x, the compiler must check
that f has a function type with domain equal to the type of z), or
typeclass constraints, which arise from uses of overloaded functions.
Similarly, standard Hindley-Milner type inference amounts to a
constraint generation and solving process in which the solver
performs first-order unification (Sulzmann et al. 1999).

GHC uses the OutsideIn(X) algorithm (Vytiniotis et al. 2011) to
handle the constraints it generates. This is notionally parametric in
the choices of constraint domain X and solving algorithm, and pro-
vides domain-independent conditions that the constraint solver must
satisfy. However, in practice there is only one choice for the solver:
GHC implements the solver for type equality constraints (including
type families) and typeclasses also described by Vytiniotis et al.
(2011). To permit domain-specific equational theories, this solver
must be made user-extensible. The user is not expected to replace
the solver entirely, although the capability might be interesting (e.g.
to experiment with other algorithms).

In this section, I will describe how such a plugin constraint solver
works, first as a practical Haskell program interfacing with GHC,
then in the more formal theoretical setting of OutsideIn(X).

3.1 Plugging in to GHC

Once GHC’s built-in constraint solver has finished its work, it is left
with a set of constraints that it could not solve. The job of a plugin
solver is to take this set of wanted constraints and either

e identify impossible constraints that GHC has failed to reject
outright, for example kg ® kg ~ m; or

e solve or further simplify the constraints, perhaps generating
others in the process.

When a plugin yields new constraints, the main GHC constraint
solver will be re-invoked in case it can make further progress, the
plugin will be called again, and so on.

To be more precise, a plugin solver is a Haskell function supplied
separately with ‘given’, ‘derived’'” and ‘wanted’ constraints:

solve :: [Ct] — [Ct] — [Ct] — TcPluginM TcPluginResult
solve givens deriveds wanteds = ...

Here Ct is GHC’s internal type of constraints, TcPluginM is a
monad providing effects suitable for plugins, and TcPluginResult
captures possible outcomes of constraint solving:

data TcPluginResult
= TcPluginOk { solved :: [(EvTerm, Ct)], new :: [Ct]}
| TcPluginContradiction { émpossible :: [Ct]}

The TcPluginOk case includes a list of solved constraints along
with associated evidence (to be discussed in subsection 3.1.2), and
a list of new constraints to be processed by the main solver. Note
that it is possible for ‘given’ or ‘derived’ constraints to be solved,
which simply means to drop them from consideration since they
provide no useful information (e.g. consider a ® 1 ~ a). The
result TcPluginOk [] [] indicates that no progress was made: no
constraints could be solved and no new constraints were generated.

10 Derived constraints arise during the constraint solving process, e.g. from
functional dependencies; they will not be considered in any detail here.



tcPluginlO 210 a — TcPluginM a
-- Perform arbitrary 10
tcPluginTrace :: String — SDoc — TcPluginM ()
-- Print debug message
tcLookupGlobal :: Name — TcPluginM TyThing
-- Look up a type or definition in the context
newFlexiTyVar :: Kind — TcPluginM TcTyVar
-- Create a fresh unification variable

Figure 1. A sample of the TcPluginM interface

The details of the TcPluginM monad interface is not important; a
few example type signatures are shown in Figure 1. These include
the ability to query the context (e.g. look up the definitions of types),
generate fresh variables and perform IO operations. Arbitrary 10 is
not used in uom-plugin, but it is useful in other plugins.

Of course, plugins should be essentially pure, but this is a matter
for the plugin implementor. More generally, what does it mean for a
plugin to be well-behaved? One would expect it to be:

® pure, i.e. producing the same result for the same inputs;

e order-insensitive, i.e. regarding the constraint lists passed to the
solve function as sets (arguably the types should enforce this!);

e sound, i.e. claiming to solve constraints only if they can actually
be solved, to be elaborated on in subsection 3.1.2; and

® most general, i.e. solving constraints without ‘guessing’, which
I will return to in section 4.3.

3.1.1 Plugin-Aware Constraint Solving

The algorithm GHC uses when solving constraints in the presence
of a typechecker plugin is as follows:

1. Run the built-in constraint solver, producing a set of constraints
that it could neither solve nor show inconsistent.

2. Call the plugin with the remaining constraints:

e if it returns TcPluginContradiction, report the impossible
constraints and stop;

e if it returns TcPluginOk with some new constraints, remove
the solved constraints from the constraint set, add the new
ones, then start again from the beginning;

e if it returns TcPluginOk with no new constraints, remove
the solved constraints from the constraint set and stop.

For example, suppose GHC has arrived at a point in the typechecking
process where it has some type family F :: Unit — x, a given
constraint F (m @s) ~ (), an as-yet unsolved unification variable
«, and wanted constraints

Fa~(),
(a®s) ~ m,
that have already been simplified as far as possible by the built-in

constraint solver. The plugin solver can now run and output a new
wanted constraint « ~ m @ s, leading to the wanted constraints

Fa~ (),

(a®s) ~ m,

a~ (mos).
Now the built-in solver can make further progress, substituting for
« and using the given constraint to discharge the first goal, leaving

Typeclasses

Data types

Type families

Rigid variables
Unification variables
Type variables
Types

‘13O

G
b, c
By
Y, 2

= a|a
l“T|F7|T1TQ|
Constraints €|QiNQ2| T ~T12|DT
Substitutions 0,6 = [T—T]
Top-level axiom schemes

2:=Q| 21 N2 |Va.Q=DT|Va.FT ~ 7

O3IBOL

Figure 2. Syntax of OutsideIn(X) types and constraints

(mos)®s ~ m,

which can be solved directly by another run of the plugin solver.
Note that even this simple example involved two runs of the built-in
solver and two runs of the plugin; while that could be avoided in this
case if the plugin performed substitution and type family reduction
itself, in general we would not want plugins to have to reimplement
GHC'’s entire solver!

3.1.2 Evidence of Soundness

If a plugin claims to have solved a constraint, why should we believe
it? It would be very easy to produce a plugin that erroneously'!
reported constraints as solved when in fact they were not, potentially
introducing type unsoundness and causing runtime crashes. GHC
already has a mechanism for detecting such errors: it does not merely
typecheck code, but elaborates it into System Fc (Sulzmann et al.
2007), a very explicit core calculus that includes easily-checked
evidence for type equality. This does not prevent all compiler bugs,
but it does make constraint solver misbehaviour easier to detect.

Thus the actual implementation of plugins demands evidence for
each constraint that the plugin claims to have solved. Some plugins
may not be able to generate bona fide evidence, in which case they
may use the equivalent of unsafeCoerce and assert a constraint
without proof. On the other hand, the author of a plugin may create
their own axioms and build genuine evidence from them, in which
case they can be sure of the type soundness of the resulting system
(provided the axioms they introduce are consistent, of course!).

In the implementation, the type EvTerm returned with a constraint
in a TcPluginOk result represents terms in the evidence language.
Forms of evidence include variables, axioms, typeclass dictionaries
and a variety of deduction rules for equality proofs. I will not
consider evidence further here, but it is discussed in more detail by
Vytiniotis et al. (2012).

3.2 Plugging in to OutsideIn(X)

Having seen how the plugin mechanism works in practice, let us
step back and consider the theory justifying it. The OutsideIn(X)
framework expects a constraint solver which takes four inputs (with
the syntax given in Figure 2):

e user-defined top-level axiom schemes 2 (e.g. from typeclass
and type family instances);

e ‘given’ constraints (Jgiven known to be true locally (e.g. from
type signatures or GADT pattern matches);

1 Or maliciously, though plugins are assumed to be trusted: they can run
arbitrary IO actions from within the typechecker, which is dangerous!



Q € 2 implies 2 I+ Q (RD)

21F Q1 and 2 A Q1 IF Q2 implies 2 IF Q2 (R2)
2 IF Q implies 0 2 IF 6 Q (R3)
QW7 ~T (R4)
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Figure 3. Properties of entailment'?

e ‘touchable’ unification variables aicn (those for which the
algorithm is allowed to solve); and

e ‘wanted’ constraints QQwanted for which solutions are to be
found.

In response, the constraint solver must produce two outputs:

e a substitution @ for the touchable variables @cn; and

e residual constraints Qresidual that could not be solved (but may
have been simplified).

The behaviour of the constraint solver is described by the judgment

. .= simp .
Q, Qgiven7 Qtch > Qwanted ~ Qresidual y 0

which must satisfy certain conditions in order for OutsideIn(X) type
inference to be sound and most general:'?

e@ A Qgiven A Qresidual I-6 Qwanted
2N Qgiven A Qwanted I- Qresidual A 50
where &g = {z ~ u| [z — u] € 0}

(Soundness)
(Principality)

That is, the constraint solver must deliver a solution that is sound,
i.e. the residual constraints solve the original problem, and most
general, i.e. the simplifier has not ‘guessed’ any values for variables
or invented constraints not entailed by the original problem. Here
2 IF @ is the constraint entailment relation, part of the X parameter
of OutsideIn(X), which satisfies the properties given in Figure 3.

3.2.1 Defining a Plugin Constraint Solver

A plugin constraint solver can be simpler than the description in the
OutsideIn(X) framework, since it need not stand alone but will be
combined with the built-in solver. In particular, the plugin need not
deal with producing a substitution for unification variables directly.
Instead, it may simply add constraints that define variables.

Suppose we have a judgment form
Q; Qgiven§ Qltch P Qr ~ Qs

meaning that the constraints (), can be simplified to Qs under the
given assumptions. Figure 4 shows how such a judgment can be
combined with the built-in solver judgment F»*™P to produce
H»-PSImP \which conforms to the OutsideIn(X) interface.'

The basic idea is that of the implementation, discussed in subsec-
tion 3.1.1: run the main constraint solver once, then pass the residual

12 There are also some technical conditions on the domain of the substitution,
which require that it substitutes only for touchable variables not occurring in
the given or residual constraints.

13 Slightly reformulated from Vytiniotis et al. (2011)

14 The details of how to calculate the sets of touchable variables «; and
g are omitted; it is straightforward but messy to add newly generated
unification variables and remove those that have been substituted away.
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Figure 4. Plugin-extended OutsideIn(X) solver

constraints to the plugin. If the plugin generates new constraints (i.e.
Qs ¢ Qr), the GO rule applies and invokes the combined solver
judgment again. If not (i.e. Qs C @Q,), the STOP rule will simply
return the remaining constraints.

Note that this process can be iterated, starting with the basic solver
and extend it with multiple plugins.

The combined judgment F»-PSMP il satisfy the OutsideIn(X)
conditions on the assumption that - »*"™P satisfies them, and
provided that B>P satisfies the conditions

a@ A Qgiven A Qs I+ Q'r
Q A Qgiven A Q'r H_ Qs

i.e. @, and Qs should be equivalent under the given constraints. In
section 4.3 I will show that the units of measure plugin I am about
to describe satisfies the soundness condition as-is, but satisfies only
a weakened form of the principality condition.

(Plugin soundness)
(Plugin principality)

4. Units of Measure as a Typechecker Plugin

Having seen the general structure of typechecker plugins, let us
consider a specific example. The uom-plugin constraint solver is
designed to deal with equality constraints between types of kind
Unit. Essentially it performs equational unification for the theory of
free abelian groups. Recalling the earlier example, GHC’s built-in
constraint solver might have been left with the unsolved constraint

Base "m" ® Base "kg" ~ Base "kg" ® Base "m"

but it is easy to see that this constraint is trivial simply by normali-
sation up to the group axioms.

For constraints involving unification variables, Kennedy (1996,
2010) describes an algorithm for AG-unification that proceeds by
a variant of Gaussian elimination, and shows how to extend this to
types containing units of measure. For example, given the constraint

a®a~ @D
the most general solution is
a~vY®Y®Y, B~ @y

for some fresh unification variable ~. Since AG-unification is
decidable and possesses most general unifiers, type inference in
an ML-like setting is well-behaved, though the let-generalisation
step is slightly subtle (Gundry 2013).'

The situation is slightly more complex in the case of the full GHC
Haskell type system, in particular because of the possible presence of

15 GHC no longer generalises let-bindings by default in the presence of type
families or GADTSs, for essentially the same reason.



Unit constraints U = €|Ui AUz |u1 ~ u2
Unit normal forms = 1|rr..pie

Atoms r = z|b|F7)

Base units b = kg|m]|..

Figure 5. Syntax of unit constraints

universally quantified variables, type families and local constraints.
Thus the plugin constraint solver may encounter constraints like

a®a~b®O®D
where a and b are universally quantified variables, or
Fa®Fb~Fb®Fa

where F is a user-defined type family. Moreover, it has to deal with
constraints that are ‘given’ as well as ‘wanted’, so it must simplify
hypotheses as well as solving goals.

The essence of the plugin’s constraint solving algorithm is to

1. identify unsolved equality constraints between units;
2. normalise both sides of each constraint up to the group axioms;

3. incrementally simplify given constraints by rewriting them to
simpler, equivalent constraints;

4. incrementally simplify wanted constraints, making use of the
information from simplifying the givens.

For example, the wanted constraint a ® a« ~ (B ® ) ®
equates two types of kind Unit, which normalise to give o ~ 2.
Once normalised, the constraint a® ~ 83 can first be rewritten to
a? . 872 ~ 1. This can be simplified by substituting by o ~ v - 8
where  is fresh, leading to v* - 871 ~ 1. Rearranging this gives
B ~ ~%. Hence the solutionis & ~ v* A § ~ ~%

Normal forms will be written in mathematical notation, as shown
in Figure 5, to contrast them with Haskell type expressions. A unit
normal form w is a product of distinct atoms r with nonzero integer
exponents. 1 represents the empty product. If two types of kind
Unit are equal under the group axioms in Figure 6, then they will
have the same normal form (e.g. z ® 1 and (y ® z) © y both denote
the same normal form z1). I use U for constraints () that include
only equations between units.

The presence of universally quantified variables or type families
means that some constraints may not be solved immediately, but
they may become feasible once other information has become
available. This motivates a dynamic unification algorithm: one that
makes progress on some constraints in the hope that others may
become easier to solve. Since each step replaces a constraint with an
equivalent constraint (up to the equational theory), it is most general,
and so we can apply simplification steps in any order.

4.1 The Constraint Solving Algorithm

For units of measure unification, the algorithm is given by the rules
in Figure 7, which define the relation Uy —=z Ui (0, ). This
explains how to rewrite a unit constraint Up into a new constraint
Ui and a pair of substitutions (6, ¢) that express the equivalence
of the original and simplified constraints, modulo the group laws.
The list of type variables Z records those that may not be modified
during unification, including both rigid and unification variables.'®

16 A rigid variable is one that arises from universal quantification. Unification
solves for flexible unification variables, but may not choose values for rigid

IDENTITY

2Fu®l ~u

ASSOCIATIVE

QH‘U1®(U2®U3) ~ (U1®U2)®U3
INVERSE

2Fu®(1lou)~1

COMMUTATIVE

21 u ®us ~ uz ® uy

TORSION-FREE
2Fudu®---®u~1

2Fu~1

Figure 6. Constraint entailment rules for units

In the interests of simplicity, failure is not represented explicitly here,
although in practice it is useful to identify obviously impossible
constraints (such as kg ~ m), and the implementation does this
using the TcPluginContradiction result (see section 3.1).

Rule (1) simply ensures that all unit equations are in the form v ~ 1.

Rule (2) solves trivial equations; since unit normal forms are being

considered up to the abelian group laws, this includes cases such as
—1

a-a "~ 1.

Rule (3) is the first to produce an output substitution, in the case
where some variable can be instantiated to solve the equation. For
example, m* - o® ~ 1 is solved by substituting [« — m?]. Of
course, the variable must not belong to the list of fixed variables Z.
Again this rule is interpreted up to the group laws.

The most complex rule is (4), which shows how progress can be
made in cases where rule (3) does not apply and so the equation
cannot immediately be solved. It relies on the fact that any unit can
be expressed as a product of distinct atoms %' - - - % . By replacing
z with a fresh variable y multiplied by a suitably-chosen unit v,
the exponents of the atoms can be reduced. Note that y should
be a rigid variable iff x is rigid. For example, this rule introduces
a fresh variable ¢ to simplify a® - b2 ~ 1 to ¢* - b ~ 1 with
O=[arrc-b?,o=[c—a-b2.

Rule (5) says that a conjunction of constraints can be simplified
by simplifying one and applying the resulting substitution to the
other. Just as units are considered up to the abelian group laws,
conjunctions should be treated as sets, so this rule allows any
constraint to be simplified.

The rules can be iterated in the obvious way to define a relation
U —% U’ (0, ¢) that makes multiple simplification steps, compos-
ing the resulting substitutions.

4.2 Instantiating the OutsideIn(X) Plugin Framework

Recall that a plugin must supply a judgement
2 Qg Tten B2 Qr ~ Qs

that explains how the given constraints Q4 and wanted constraints
Q- are simplified to produce the residual constraints (Qs. This
judgment is defined by

Ug =" U; (04, 0q) 0y U =% Uyy (O, duw)
Z=1v(0yUw) U fuv(0,Uy) \ Cten
25 Qg ANUy; Ggen PP Qu AUw ~ Qu A dg (Upy A o)

where Q4 and @, are the non-unit given and wanted constraints,
respectively, and & = {x ~ u|[z — u] € 0} is the constraint
form of a substitution 6.

ones. Parameterising the rules by forbidden rather than touchable variables is
a notational shortcut, to save changing the set when adding a fresh variable.
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Figure 7. Plugin constraint-solving algorithm

This rule assumes without loss of generality that the unit constraints
Ug and U,, are already in normal form; this is justified since every
type of kind Unit is provably equal to its normal form according to
the entailment relation.

First, the given unit constraints U, are rewritten according to the
simplification rules in Figure 7 until no more rules apply. This
produces a substitution 6, that may eliminate some rigid variables,
possibly generating some fresh rigid variables in the process, but
with a substitution ¢, that relates them back to the original variables.
Here Z is empty because rigid variables may be simplified using
the given constraints; they will contain no unification variables. The
simplified givens Uy are discarded.

Next, the substitution 6 is applied to the wanted unit constraints
U, (in order to eliminate rigid variables if possible), then they are
rewritten according to the algorithm, producing a simplified set
of constraints U;, and a substitution 6,,. At this point, only the
‘touchable’ unification variables may be instantiated, so Z contains
all the free variables that are not listed in @icp.

Finally, the residual constraints returned by the rule consist of the
unchanged non-unit wanteds Q.,, the simplified unit wanteds Uy,
and the constraint form of the substitution 6,,. The substitution
¢4, which eliminates any fresh rigid variables introduced when
simplifying the unit givens, is applied where necessary.

For example, suppose we have
U, = {a2 ~ b3}, Uy = {Wg ~a}, Ceh = {7}

where a and b are rigid variables and + is a unification variable.
Rewriting the given constraint generates a fresh rigid variable c and
produces 0y = [a + ¢ 3, b+ ¢ 2], ¢y = [c > a-b?]. Applying
04 leaves us with the wanted constraint 'y3 ~ ¢~3, which is easily
solved by 0, = [y — ¢~ ']. In order to eliminate the variable ¢
introduced by simplifying the given constraint, we apply ¢4, so we
end up with the solution ¢¢0,, = [y~ a~* - b?].

4.3 Soundness and Generality

As discussed in section 3.2, OutsideIn(X) type inference is sound
(i.e. it infers correct types for terms) and delivers principal types (i.e.
any type that can be given to the term is an instance of the inferred
type), under certain assumptions on the behaviour of the simplifier.
These assumptions lead to conditions that the algorithm described
above must satisfy.

The conditions are formulated in terms of the I+ relation, which
satisfies the properties in Figure 3. To justify the soundness and
generality of the plugin, additional inference rules are required
stating that Unit is an abelian group, as shown in Figure 6. The
ASSOCIATIVE, IDENTITY, COMMUTATIVE and INVERSE rules
are the usual abelian group laws; the role of TORSION-FREE
(characterising free abelian groups) will be discussed later.

Type safety depends on the fact that the I relation is consistent
(i.e. it cannot prove that two observably distinct types are equal).
Consistency is not threatened by the group laws, because they refer
only to type families without equations.!” If ® was a constructor
rather than a type family, however, it would be possible to derive a
contradiction.

In the following, I assume that the constraint entailment relation I+
satisfies the conditions in Figure 3 and this additional condition:

Suppose 2 I+ Eg. Then 2 I+ Q iff 2IF6Q P)
and 2AQIFQ'iff 2N 0Q IF Q.

This says that equalities are substitutive: if the equality constraints
& = {x ~ u| [z — u] € 0} hold, then applying the substitution 6
does not change the truth of a proposition. This should be the case
for any reasonable entailment relation, in particular the concrete
entailment relation used by Vytiniotis et al. (2011).

The basic result about the rewrite system needed to show that
solutions are both sound and most general is the following, which
amounts to showing that rewriting produces equivalent constraints,
assuming the substitutions hold as a equations as appropriate. I write
Qo <> Q1 to mean that the constraints Qo and Q1 are equivalent in
the sense that Qo I+ Q1 and Q1 IF Qo.

Lemma 1 (Soundness and generality of unification steps). If
Uo =z Ui (0,0) then U1 A Eg <> Uy A Es.

Proof. By induction on the definition of the — relation.

For rule (1), we need to show v - v~ ~ 1 < u ~ v, which
follows straightforwardly from the group axioms. Similarly, rule (2)
is trivial.

For rule (3), the interesting part is showing 2* - u* ~ 1 IF 2 ~ v L.

The TORSION-FREE rule means that (z - u)* ~ 1 implies 2 -u ~ 1.

For rule (4), we must show that

k 1

v w~IAz~yv o 2Rt Ay~

i /k lin/k i1 mod k
where v = 1] Lis/k] o plin/ Jandw:ri1 mod k.,

which follows from the fact that 71 - . 7in ~ ¢~
For rule (5), we must show Uy A QU1 A Eg <> Ug AUL A Ey.

By induction we have Ug A Ep <+ Ug A €, and property (P) gives
QUL N Eg + Us. O

. T;L" mod k7

k~w.

In addition, the following lemma shows the relationship between
the two substitutions § and ¢ produced by the algorithm: applying
¢ to 0 yields equations that follow from the input constraints Up.

Lemma 2. If Uy = Ui (0, @) then Uy I+ Epoo.

7 GHC 7.10 does not make it possible to enforce that a type family has
no equations, but the next release will support empty closed type families.
Additionally, this relies on the assumption that all user-defined type families
at kind Unit are well-defined (terminating).



Proof. By induction on the definition of the — relation. The only
rules that extend the substitution 6 are (4), for which © ~ u ™1
follows by TORSION-FREE, and (5), for which the composition is
[y—z-v o[z —y-v] =[x (z-v7")- ], the identity up
to the group axioms. O

From these results, which extend inductively in the obvious way
to multiple reduction steps, it follows that the constraint solver is
sound in the sense required by OutsideIn(X).

Theorem 1 (Soundness). If 2; Q1; Qteh PP Q2 ~ Qs then
g/\Ql/\Qg ”—Qz.
Proof. Recall from section 4.2 that we define B> by

Uy =" Ul (Bg,69) 04U =% Uly (B, )
zZ=1v(0y,Uw) U fuv(0yUw) \ @ten

2; Qg ANUg; Gren B Qu AU ~ Qu A ¢y (Uyy Aa,,)
hence we have
Q1= Qg AUg, Q2= Qu AUy, Q3 = Qu A o (Ul,v /\5911;)
and we need to show that
2N (Qg ANUg) NMQu A g (Usy AEa,)) IF Qu AU
Since Quw I+ Q. it is sufficient to show
Uy A g (Ul AEs,) IF U

We are justified in reasoning up to unit normal forms since if u
and v are equivalent normal forms then € |- u ~ v so (R8) gives
elbla—= ulT~[a—v]T.

Lemma 1 gives 0y Uy A Eg,, <> U, A &g, , so from (R3) we
have ¢4 (U, A Eo,,) IF ¢4 (04 Uw). Moreover Lemma 2 gives
Ug IF Ep,400, 50 property (P) gives the required entailment. O

Principality is more interesting, however. This requires that the
constraint solver delivers most general solutions, which intuitively
means that it makes no ‘guesses’ that are not implied by the
original wanted constraints. Vytiniotis et al. (2011) define ‘guess-
free solutions’ as those where the wanted constraints entail the
residual constraints; for the plugin this amounts to requiring

DAN(Qg AU A(Quw AU IF Qu A ¢y (Ul A Es,,).

Unfortunately, this is not true! Consider the sole wanted constraint
a? ~ B3, which according to the algorithm in Figure 7 can be
solved by 6 = [a + v3, 8 + 2] where ~ is a fresh unification

variable. The guess-free solution condition would require us to show
P~ IF a~yP AL~

and this is simply not derivable, because the fresh variable ~y has
been conjured out of thin air.

So what has become of the claim that the steps of the algorithm
described above are all most general? The unifier 6 is indeed the
most general unifier, in the sense that any unifying substitution for
this equation must determine ~y and agree with 6 up to the abelian
group laws. The fresh variable v must be o - 371, but the definition
of guess-free solutions does not make use of this knowledge.

Instead, we can prove a weaker result:

Theorem 2 (Generality). If 2; Qg ; Gten PP Qr ~ Qs then
Qg N Qr Ik Qs for some subsitution 1 for the freshly introduced
variables, i.e. with domain fuv(Qs) \ fuv(Q-).

Proof. Taking ¢ = ¢,, we must show that

2N (QgAUg) ANMQu AUw) IF ¢ (Qu A g (UTIJ) NEoy,))

is derivable. Now dom(¢w) # fuv(Quw) and Quw Ik Quw, so it is
enough to show Uy A Uy, I+ ¢y ¢y (UL, A Es,,)-

Lemma 1 gives 04Uy A Ep, <> Ul A &g, so by (R3) we
have ¢ g (0g U A Epyy) <> Puw dg (UL, A o, ), which implies
that ¢w ¢g 0y Uw I+ ¢ &g (Ul A Ep,,). Now we must have
dom(¢pw ) # fuv(dy8y Uw) 0 ¢g 0y U I+ ¢ g (Ul A Epy,)-
Moreover Lemma 2 gives Uy I €4 00, so we can deduce the
required entailment using property (P). O

That is, the solution found by the algorithm may not be guess-
free in the original sense, but there is some substitution for the
fresh variables it introduces by which it can be transformed into
a guess-free solution. I conjecture that this weaker property is in
fact sufficient for the proof that OutsideIn(X) type inference (if it
succeeds) delivers principal types.!

The underlying problem here is that OutsideIn(X) does not have a
clear notion of scope for type variables: it is not the case that

a?~ B s anyP AR~
but rather we must contextualise the variables, as in
Jo.38. o ~ B & Fa3B.3y. a~~EAB ~ A1

In fact the same problem shows up in the algorithm described
by Vytiniotis et al. (2011), which reduces the wanted constraint
F(G(z)) ~ yto F(B) ~ y AG(xz) ~ [ where F and G are type
families and [ is a fresh unification variable; it would appear that

F(G(z)) ~y I F(B) ~yAG(x) ~
contrary to their Lemma 7.2.

On another note, observe that the proofs relied on an additional rule,
TORSION-FREE, beyond the usual laws of an abelian group. This
is crucial for proving both that solutions to wanted constraints are
most general, and that simplifications of given constraints are sound.
It amounts to restricting models of Unit to being free abelian groups,
i.e. those generated by the base units and abelian group laws but
with no other equations."”

Without TORSION-FREE, the addition of an axiom kg ® kg ~ 1
would be consistent, but then it would no longer be most general to
solve the wanted a ® av ~ 1 with o ~ 1, nor would it be sound
to simplify the given a ® @ ~ 1to a ~ 1, as in either case kg is
an alternative solution.

5. Related Work

The design of uom-plugin owes a lot to Andrew Kennedy’s
implementation of units of measure in F#, and Richard Eisenberg’s
units Haskell library. I compare it with each of them in turn.
While there are several other Haskell libraries for units of measure®°,
making slightly different design choices, units represents the state
of the art and the comparison is broadly representative.

18 Theorems 3.2 and 5.2 of Vytiniotis et al. (2011)

19 Free abelian groups are always torsion-free, and torsion-free finitely
generated abelian groups are free.

20 Notably dimensional-dk by Bjérn Buckwalter and Douglas McClean
(https://github.com/bjornbm/dimensional-dk)
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5.1 Units of Measure in F#

The plugin described in this paper provides support for units of mea-
sure that is inspired by, and broadly comparable with, Kennedy’s
implementation in F#.2' Constants and numeric types can be anno-
tated with units, units may be polymorphic, and unit equations that
arise during typechecking are solved by abelian group unification.

Working in Haskell introduces many new feature interactions to
explore, notably with typeclasses, GADTs, type families, higher-
kinded and higher-rank types. For example, Haskell allows defini-
tions that are polymorphic in type constructors of kind Unit — *.

On the other hand, while the GHC typechecker plugins support
makes some exciting new things possible, a plugin cannot (yet)
extend GHC with a completely new language feature. In particular,
Template Haskell quasiquotation allows the introduction of new
syntax (e.g. for expressions containing quantities with units, or
types mentioning units), but this syntax will not be used in output
(such as error messages or inferred types). Thus the user can write

[u| 5m/s|] :: Quantity Int [u|m/s|]
but the inferred type of this expression is the less easy to read
Quantity Int (Base "m" @ Base "s")

Moreover, there is no way to simplify an inferred type in a domain-
specific manner. Thus a type may sometimes be presented as

Num a = Quantity a (Base "s" ® (Base "m" @ Base "s"))
rather than the (equivalent)
Num a = Quantity a (Base "m")

It should be relatively straightforward to extend GHC’s plugin
support to allow extensions to pretty-printing and presentation of
inferred types, but there will always be limitations of the plugin
technique compared to building support into the language, as in F#.

5.2 The units Package

Another key inspiration for this work is the units library (Mu-
ranushi and Eisenberg 2014), which is the state of the art as far
as units of measure in Haskell are concerned. As discussed in sub-
section 2.2.1, uom-plugin is able to achieve better type inference
behaviour and more comprehensible error messages than units
thanks to the use of a typechecker plugin, rather than encoding ev-
erything using type families and other existing GHC features. On
the other hand, since units does not require a plugin it is more
broadly compatible and avoids the potential for plugin-introduced
bugs. Moreover, it makes use of Template Haskell to permit a rela-
tively nice input syntax.

Another crucial difference in library design is that units is based
around working with dimensions (such as length and mass), rather
than units directly. A dimension has a ‘canonical’ unit that deter-
mines how quantities are represented, but they may be introduced
or eliminated using other units, with appropriate conversions per-
formed automatically. There is even support for working with multi-
ple local coherent systems of units (choices of canonical units for
dimensions) in different parts of a single program. This allows code
to be typechecked for dimension safety, but remain polymorphic in
the particular units, and makes it easier to avoid numeric overflow
errors when working with quantities at vastly different scales.

In the interests of simplicity, the uom-plugin library follows F#’s
approach of indexing types by units of measure alone, not including

21 Prior to the upcoming F# 4.0, which will support fractional units.

dimensions, but the approach described in this paper should be able
to scale to handle dimensions. The best way to represent them, and
provide features such as automatic conversion between units of the
same dimension, is a matter of ongoing work.

5.3 Plugging in an SMT Solver

This paper described a plugin to support units of measure by
providing a special-purpose constraint solving algorithm based on
abelian group unification. In contrast, Diatchki (2015) describes
type-nat-solver,? a plugin that interfaces with an SMT solver
to handle constraints arising from type-level natural numbers. In
principle, the SMT solver approach could be extended to deal with
other domains, such as abelian groups.

However, an SMT solver is designed to determine whether or not a
given collection of constraints is satisfiable. If so, it will typically
produce a satisfying assignment of values to variables. This is not
immediately enough for use in type inference, which requires finding
most general solutions to constraints involving unification variables.

For example, a constraint like o - f ~ 1 has many satisfying
assignments (such as a ~ 1, 8 ~ 1) but we need to determine the
most general solution (namely a ~ 37 1). It is possible to ‘improve’
constraints in an ad-hoc or theory-specific way, by guessing a
candidate constraint and testing whether it follows from the other
constraints, but this makes it hard to specify exactly which type
inference problems will be solved by the system.

Thus there is room for experimentation with both special-purpose
unification algorithms (such as that described in the present paper)
and application of general SMT solvers to type inference. The
typechecker plugins framework described in section 3 offers a
common theoretical basis for both techniques. A more radical step is
to change the type system so that typechecking generates verification
conditions directly, rather than unification problems, as in work on
refinement types (Vazou et al. 2014).

6. Conclusion

In this paper, I have introduced the notion of typechecker plugins
both as an implementation technique in GHC and in terms of
the OutsideIn(X) framework. I have made use of this to define
a library for units of measure with good type inference properties,
in particular the ability to find most general solutions to constraints
arising from unit polymorphism.

Practical use of plugins is still at an early stage, as they are quite low
level and closely tied to GHC’s constraint solver. There is much to
do to build better abstractions on top of the low-level interface, and
hence make it easier to write plugins without deep knowledge of
GHC. Termination of constraint solving in the presence of plugins
is a particularly tricky issue. It is quite easy for a poorly written
plugin to create an infinite loop, for example by emitting a new
but trivial constraint each time it is invoked. Moreover, while
evidence generation gives some indication of soundness (albeit
not consistency of the axiom system used to produce the evidence),
it is hard to ensure that plugins deliver most general solutions to
constraints.

Two main avenues for future work are extending the uom-plugin
library itself, and adding features to GHC that make more powerful
plugins possible. I will consider these, then suggest some possible
other applications for the concept of typechecker plugins.

2 https://github.com/yav/type-nat-solver
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6.1 Further Support for Units of Measure

Evidence generation The prototype units of measure plugin does
not yet support evidence generation (see subsection 3.1.2); rather,
it follows the method of proof by blatant assertion. In principle it
should be possible to generate proofs based on the abelian group
axioms from Figure 6. This would allow GHC’s -dcore-1lint
option to check that the plugin is generating correct output.

Formally, this would amount to translating the proofs of Lemma 1
and Theorem 1 into a program that generated evidence using the
appropriate combination of group axioms for each constraint solving
step. It would be slightly weaker than a fully mechanised correctness
proof for the algorithm, however, as it would only ensure correctness
on individual inputs (rather than for all possible inputs).

Automatic conversion inference As observed above, representing
dimensions and inferring conversions between quantities of the same
dimension is a matter of ongoing investigation. This is not essential,
because the user can always write their own conversions, but it
would be better if they were able to write something like

r = convert [u| 10 ft/min ]
:: Quantity Double (Base "m" @ Base "s")

and have the compiler automatically insert the conversion from
ft/min to m/s.

One way to encode such automatic conversions is through the
definition of a pair of additional type families: Pack, which converts
a list of (base unit, integer exponent) pairs into the corresponding
unit, and Unpack, which represents a fully known unit as a list of
such pairs (in a canonical order). Thus we have:

type family Pack (zs :: [(Symbol, Integer)]) :: Unit
where
Pack [] =1
Pack ((b,7) : zs) = (Base b ® i) ® Pack zs

type family Unpack (u :: Unit) :: [(Symbol, Integer)]

Pack [("m", Pos 2), ("s", Neg 1)]
= Base "m" ® 2 © Base "s"

Unpack (Base "m" ® 2 @ Base "s")
= [("m", Pos 2), ("s",Neg 1)]

(Here @ represents exponentiation for units, and type-level integers
are represented as natural numbers with a Pos or Neg constructor.)

Pack can be defined via a standard closed type family, but Unpack
must be defined specially by the plugin because it observes the
structure of the unit. It respects the equational theory on units, and
hence does not break type soundness.

Together, these type families make it possible to encode the convert
function and other advanced features using existing GHC Haskell
type-level programming techniques. However, once more it becomes
a challenge to make error messages simple and comprehensible. It is
an interesting challenge to extend the units of measure library further
while maintaining a suitable balance between features implemented
in the plugin and those encoded using existing functionality.

Construction of quantities 1t is slightly unsatisfying that con-
structing literal quantities in a safe way fundamentally requires
Template Haskell, rather than it providing mere syntactic sugar. One
alternative is to expose the MkQuantity constructor to the user,
and require them to follow a suitable syntactic discipline in its use:
always instantiating its type to concrete units. A way to lift this
restriction would be beneficial, but by no means essential.

Termination and completeness On a more theoretical note, it
would be nice to prove that the plugin-extended constraint solver
terminates, and is complete in an appropriate sense. Unfortunately,
both of these are tricky issues in OutsideIn(X) even before plugins
are added, and modular reasoning about termination is particularly
difficult.

Extending the algebraic structure Finally, while indexing quan-
tities by a single abelian group of units is a reasonable point in the
design space, there are other choices for the model of units and
quantities. For example:

e Dimensions such as length and time could be tracked separately,
and their consistency checked, as in units (see section 5.2).

e Fractional units are sometimes useful, such as v'Hz (i.e. Hz'/?),
which arises when quantifying electronic noise levels.

® Multiple origins need to be considered to handle units of temper-
ature, since 0C = 273 K. It may be possible to handle these by
indexing quantities by an abelian group of translations as well
as units (Atkey et al. 2013).

e Logarithmic units such as dBm require arithmetic operations
like & to be given different types.

There is a direct trade-off between simplicity and expressivity of the
system. The example of F# suggests that the simple abelian group
model of units is useful in practice.

6.2 Extensions to the Plugins Mechanism

Apart from the constraint solver, there are many other points where
it would be useful for typechecker plugins to be able to extend the
compiler with domain-specific behaviour:

e control over simplification and presentation of inferred types, as
discussed in section 5.1;

e casily defining special reduction behaviour for type families,
such as the Unpack type family described in section 6.1;

e manipulating error messages, for example so that a DSL imple-
mentor can provide domain-specific guidance on likely reasons
for a certain class of error, along the lines of error reflection in
Idris (Christiansen 2014).

6.3 Other Applications for Plugins

Beyond units of measure and type-level numbers, there are many
other potential applications for typechecker plugins:

e permitting injective type families (Stolarek et al. 2015);

¢ indexing a monad by the available effects, using a solver for a
theory of sets, maps or boolean rings, as in the effect-monad
library of Orchard and Petricek (2014);

e typeclasses such as Coercible (Breitner et al. 2014) and
Typeable (Limmel and Peyton Jones 2003), with non-standard
search strategies rather than the usual instance search;

e adding n-laws for type-level tuples or record types; and

e record system extensions, such as extensible records via row
polymorphism, or the proposed OverloadedRecordFields.?

B https://ghc.haskell.org/trac/ghc/wiki/Records/
OverloadedRecordFields
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In particular, it would be interesting to try factoring out an existing
piece of GHC functionality (such as the Coercible or Typeable
typeclasses) into a plugin, increasing modularity. One could even
imagine disabling the entire built-in constraint solver, allowing
experimentation with alternative algorithms, although this is likely
to be practically difficult as it would require the plugin to represent
substitutions more directly.

More generally, the existing typechecker plugin interface is at a
relatively low level, requiring the plugin implementer to have a
fairly detailed knowledge of the way type inference is implemented
in GHC (e.g. to generate evidence using its internal data types). A
broader challenge for future work is to find a suitable interface that
is both powerful enough to implement special-purpose constraint
solver behaviour, and simple enough to make the creation of domain-
specific constraint solvers accessible to more users. Hopefully it
should be possible to build such a higher-level interface on top of
the existing typechecker plugins support in GHC.
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