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Abstract

Typed functional programming and units of measure are a nat-
ural combination, as F# ably demonstrates. However, encoding
statically-checked units in Haskell’s type system leads to inevitable
disappointment with the usability of the resulting system. Extend-
ing the language itself would produce a much better result, but it
would be a lot of work! In this paper, I demonstrate how type-
checker plugins in the Glasgow Haskell Compiler allow users to
define domain-specific constraint solving behaviour, making it pos-
sible to implement units of measure as a type system extension
without rebuilding the compiler. This paves the way for a more
modular treatment of constraint solving in GHC.

1. Introduction

Dimensions (such as length and time) and units of measure (such
as metres, feet and seconds) are a highly useful mechanism to

• reduce the chances of making a costly error1, and
• make it easier to perform calculations.

As Kennedy (2010) put it, “Units-of-measure are to science what
types are to programming.” It is natural, therefore, to consider
the extension of typed programming languages with support for
units of measure. At a minimum, such support should allow the
programmer to declare the units of quantities, and prevent them
making errors such as adding incompatible quantities. There has
been much work in this direction, notably by Kennedy (2010) in the
context of the F# functional programming language. He has shown
that units of measure fit particularly well with Hindley-Milner type
inference, leading to a simple but powerful system.

For example, in F# one can write

1 It is traditional here to cite the Mars Climate Orbiter, or the Gimli Glider
(http://lamar.colostate.edu/~hillger/unit-mixups.html).

[Copyright notice will appear here once ’preprint’ option is removed.]

> [<Measure> ] type m; ;
> [<Measure> ] type s; ;
> let time = 3.0⟨s⟩; ;
> let speed = 5.0⟨m/s⟩; ;
> let distance = time ∗ speed ; ;

and the system will correctly infer the units of distance:

val distance : float⟨m⟩ = 15.0

In addition, Kennedy’s system supports unit polymorphism: defini-
tions can be checked abstractly, with the concrete units being de-
termined at the use sites. For example, one can define the function

> let sqr (x : float⟨ ⟩) = x ∗ x ; ;
val sqr : x : float⟨u⟩ → float⟨u∧2⟩

which is polymorphic in a unit variable u . The type annotation on
the definition is necessary because overloaded arithmetic operators
in F# do not have units by default.

Modern GHC Haskell supports a range of language features (in par-
ticular, type families) that make it possible to encode quite complex
properties at the type level. Correspondingly, in the Haskell world
there have been various attempts to encode units of measure, in par-
ticular the robust and expressive units library by Muranushi and
Eisenberg (2014). This allows one to write

time = 3.0 % [si| s |]
speed = 5.0 % [si|m/s |]
distance = time � speed

although the inferred type of distance is not F#’s float⟨m⟩ but

distance ::Qu [F Length One ] DefaultLCSU Double .

While this work is very impressive, it is inevitably limited by the
features that GHC exposes to programmers, and this shows up in
the inferior type inference behaviour and error messages produced
by units of measure libraries as compared to genuine language
extensions (as in F#).

How might we go about extending the Haskell language itself, as
implemented in GHC, with units of measure? While GHC’s exten-
sibility is impressive, writing a language extension is inevitably a
drawn-out and complex process, requiring a great deal of work to
specify and implement the new feature. Moreover, GHC is a mov-
ing target: its rapid pace of development makes it difficult to work
on large new features without spending much time resolving merge
conflicts. It would be very desirable if we could plug in support for
units of measure to GHC, without changing GHC itself.
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1.1 Type-level arithmetic

Additional motivation for such functionality comes from another
desirable GHC extension: increasing the automated reasoning
available to users of type-level arithmetic. For some time, thanks
to the work of Iavor Diatchki2, it has been possible to use natural
number literals and arithmetic operators in types. For example, one
can define vectors (lists indexed by their length):

data Vec a (n :: Nat) where
Nil :: Vec a 0
Cons :: a → Vec a n → Vec a (1 + n)

myVec :: Vec Char 3
myVec = Cons ’a’ (Cons ’b’ (Cons ’c’ Nil))

vhead :: Vec a (1 + n) → a
vhead (Cons x ) = x

However, further progress is stymied by the lack of support for
working with numeric variables. While vhead works, this simple
definition of vector tail

vtail :: Vec a (1 + n) → Vec a n
vtail (Cons xs) = xs

is not accepted by GHC 7.8.3, because it does not know that (1+)
is an injective function:

Could not deduce (n1 ~ n)
from the context ((1 + n) ~ (1 + n1))
bound by a pattern with constructor Cons
... in an equation for vtail

It would be nice if the typechecker was able to prove more equa-
tions, using domain-specific knowledge about arithmetic. However,
it is not entirely clear how best to implement this. One possibility
is to interface GHC to an SMT solver, so that the SMT solver can
solve arithmetic equations left unsolved by GHC. The inch type-
checker (Gundry 2013) demonstrates an alternative approach based
on ring normalization. In either case, the ability to provide this
functionality via an external plugin, rather than directly in GHC,
permits experimentation, makes development easier and enables
deployment independently of GHC’s release cycle.

1.2 Compiler plugins

Max Bolingbroke and Austin Seipp implemented support for com-
piler plugins in GHC version 7.2.13. Inspired by a similar concept
in the GNU Compiler Collection (GCC), they were originally in-
tended for adding custom optimizations and analyses of GHC’s
internal Core language (System FC). The basic idea is that a user
package (distributed separately from GHC itself) contains a mod-
ule M that exports a symbol plugin belonging to the type Plugin
defined in the GHC API. Users can invoke GHC with an additional
argument -fplugin=M, whereon the module will be dynamically
linked into the running compiler, and invoked during compilation.

Crucially, plugins allow new compiler functionality to be added
separately from the main development effort. This makes feature
development quicker, as the entire system need not be recompiled
when a plugin is changed, and makes it easier for programmers who
are not compiler developers to contribute to and use plugins.

2 https://ghc.haskell.org/trac/ghc/wiki/TypeNats
3 https://downloads.haskell.org/~ghc/7.2.1/docs/html/
users_guide/compiler-plugins.html

1.3 Summary

In the sequel, I will first describe uom-plugin, a Haskell library for
units of measure, then explain the typechecker plugins feature that
makes it possible. I will specify the typechecker plugins mechanism
in general, and the constraint-solving algorithm used by the plugin,
in terms of GHC’s OutsideIn(X) type inference framework.

Concretely, the contributions of this paper are:

• a design for a units of measure library with good type in-
ference properties, showing the need for domain-specific con-
straint solving behaviour in the typechecker (section 2);

• an explanation of the typechecker plugins interface that enables
constraint solver extension, both informally in Haskell and for-
mally by relating it to OutsideIn(X) (section 3);

• an algorithm for solving constraints in the equational theory of
free abelian groups, which satisfies the properties required for
sound and most general type inference (section 4); and

• a comparison of the resulting units of measure system to other
approaches in F# and Haskell (section 5).

The uom-plugin library is available online.4 The typechecker plu-
gin functionality on which it relies will be available in GHC 7.10.

2. Units of measure

First, let us consider how to extend our language with the syntax of
units of measure, then go on to discuss its semantics.

2.1 The syntax of units

A typical approach to units of measure in programming languages
is to annotate numeric types with their units, such as the int⟨·⟩ and
float⟨·⟩ type constructors in F#. In Haskell, the natural way to do
this is through the definition

newtype Quantity a (u :: Unit) = MkQuantity a

which makes Quantity a u use the same runtime representation as
the underlying (typically numeric) type a , but tagged with a phan-
tom type parameter (Leijen and Meijer 1999) u of kind Unit. This
means that using Quantity a u has no runtime overhead compared
to using plain a , but it can have additional safety guarantees.

The Unit datatype is lifted to the kind level via datatype promotion
(Yorgey et al. 2012). It has no constructors, but instead is accompa-
nied by the following type-level definitions, implemented as type
families without any equations:

1 :: Unit
Base :: Symbol → Unit
(⊛) :: Unit → Unit → Unit -- or *: in ASCII
(⊘) :: Unit → Unit → Unit -- or /: in ASCII

Base creates base units, which are represented as type-level strings
(of kind Symbol) for simplicity. Dimensionless quantities are rep-
resented with 1, and the operators allow more complex units to
be formed. Representing them as type families with no equations
means they are essentially opaque symbols that may not be par-
tially applied and are not injective; this avoids the equational theory
of units conflicting with GHC’s built-in equality rules for types.

4 https://github.com/adamgundry/uom-plugin
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Crucially, the MkQuantity constructor should be hidden from
client code, so that users of library are forced to work with a unit-
safe interface.5 If the constructor were available, users could write
code like this, which would destroy all unit safety guarantees pro-
vided by the library:

unsafeConvertQuantity ::Quantity a u → Quantity a v
unsafeConvertQuantity (MkQuantity x ) = MkQuantity x

Of course, users need some way to produce and consume quantities,
i.e. convert between a and Quantity a u . It is fine for the library
to expose

unQuantity :: Quantity a u → a
unQuantity (MkQuantity x ) = x

but not

MkQuantity :: a → Quantity a u

as their composition yields unsafeConvertQuantity . The real
problem here is that MkQuantity should only be monomorphic
(sometimes known as ‘weakly polymorphic’) in its unit. It is fine
for u to be any concrete unit, but it must not be generalized over (to
become a universally quantified type variable) outside the module
in which it is defined. Such variables are permitted in types in Caml
(Garrigue 2004), but not in Haskell. As a workaround, the library
offers a Template Haskell quasiquoter that enables the user to write
concrete quantities in a convenient syntax:

mass = [u| 65 kg |]
g = [u| 9.808m/s∧2 |]

Moreover, omitting the numeric value yields a specialization of
MkQuantity to the appropriate type, which is useful when units
need to be attached to numeric values that are not literal constants,
for example:

readMass :: IO (Quantity Double (Base "kg"))
readMass = fmap [u | kg |] readLn

The library includes the following (written +: and *: in ASCII):

(⊕) :: Num a ⇒
Quantity a u → Quantity a u → Quantity a u

MkQuantity x ⊕MkQuantity y = MkQuantity (x + y)

(⊛) :: Num a ⇒
Quantity a u → Quantity a v → Quantity a (u ⊛ v)

MkQuantity x ⊛MkQuantity y = MkQuantity (x ∗ y)

The (⊕) and (⊛) operators on quantities are analagous to the (+)
and (∗) operators on numbers, except that the phantom parameter
makes sure the units are kept in order. Quantities may be multiplied
regardless of their units, but may be added only if the units match.6

For example, if we have some values

mass :: Quantity Double (Base "kg")
distance :: Quantity Double (Base "m")

then we can we define

x :: Quantity Double (Base "kg"⊛ Base "m")
x = mass ⊛ distance

5 In fact, the constructor is exported by a separate internal module, as it
is sometimes useful in practice, e.g. to allow Coercible coercions of data
structures containing quantities.
6 Unfortunately this means that Quantity a u cannot be an instance of the
standard Haskell Num typeclass, which bundles addition, subtraction and
multiplication together. An instance may be given only for Quantity a 1.

but attempting to add mass to distance gives a type error:

Couldn’t match type ‘Base "m"’ with ‘Base "kg"’
Expected type: Quantity Double (Base "m")

Actual type: Quantity Double (Base "kg")
In the first argument of ‘(+:)’, namely ‘mass’
In the expression: mass +: distance

2.2 The equational theory of units

Are we done? Not quite. Our definitions so far allow us to write
the syntax of units of measure, but we have not accounted for
their equational theory. We would expect quantities with the units
Base "kg" ⊛ Base "m" and Base "m" ⊛ Base "kg" to be
interchangeable; unit multiplication should be commutative! But
adding mass ⊛ distance to distance ⊛mass gives:

Couldn’t match type ’Base "m" *: ’Base "kg"
with ’Base "kg" *: ’Base "m"

NB: *: is a type function, and may not be injective
Expected type:

Quantity Double (’Base "kg" *: ’Base "m")
Actual type:
Quantity Double (’Base "m" *: ’Base "kg")

In the second argument of (+:), namely
(distance *: mass)

In the expression:
(mass *: distance) +: (distance *: mass)

In addition to the usual GHC Haskell rules for type equality (Sulz-
mann et al. 2007), we would like additional equations to hold to
characterise the operations. As in Kennedy’s system in F#, these
equations are the standard laws of an abelian group:

∀ u v . ((u ⊛ v)⊛ w) ∼ (u ⊛ (v ⊛ w))
∀ u v . (u ⊛ v) ∼ (v ⊛ u)
∀ u v . (u ⊛ 1) ∼ u
∀ u v . (u ⊛ (1⊘ u)) ∼ 1

But how can we make them hold? GHC allows new axioms to be
introduced using a type family, but type families (like functions)
may pattern match only on constructors, not other type families.
In any case, type families are typically useful only if they define
a terminating rewrite system, and associativity and commutativity
are hardly going to do so!

2.3 An attempted solution

This is the point where most Haskell units of measure libraries give
up on providing exactly the desired equational theory given above.
Instead, a common approach is to write a normalisation function
for concrete unit expressions (implemented as a type family, of
course). Provided one is very careful to talk only about equality
of normal forms, not the original syntax of unit expressions, this
allows some of the desired behaviour. For example, the units
package defines addition of quantities with this type:7

(⊞) :: (d1 @∼ d2,Num n) ⇒
Qu d1 l n → Qu d2 l n → Qu d1 l n

7 Instead of annotating quantities with units directly, the units package
uses a combination of dimension (d) and local coherent system of units (l);
the difference is discussed in subsection 5.2.

Boxed operators are definitions from units, to distinguish them from
the circled operators of uom-plugin. ⊞ is written |+| in ASCII.
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tcPluginIO :: IO a → TcPluginM a -- Perform arbitrary IO
tcPluginTrace :: String → SDoc → TcPluginM () -- Print debug message
findImportedModule ::ModuleName → Maybe FastString → TcPluginM FindResult -- Look up details of a module
tcLookupGlobal :: Name → TcPluginM TyThing -- Look up a type or definition in the context
newFlexiTyVar :: Kind → TcPluginM TcTyVar -- Create a fresh unification variable

Figure 1. A sample of the TcPluginM interface

The constraint d1 @∼ d2 means that d1 and d2 should be compared
up to equality of normal forms, a weaker condition than d1 ∼ d2,
which would require d1 and d2 to be equal in GHC’s equational
theory. This weaker contraint means that GHC can determine that
kg∗m and m∗kg have the same normal form, and hence quantities
with those units may be added.

Unfortunately, this has rather drastic consequences for error mes-
sages, because they are expressed in terms of normal forms. In
units, the erroneous addition gives this:

Couldn’t match type [F Mass One, F Length (P Zero)]
with []

In the expression: mass |+| distance

Apart from introducing yet another equivalence relation for the user
to understand, and mystifying them with error messages, we lose
something important in the shift from (⊕) to (⊞): well-behaved
unit polymorphism. The normalisation approach breaks down when
there are variables or other non-canonical unit expressions present.
It cannot conclude that u�v is interchangeable with v�u , because
it cannot compute the normal form of variables such as u and v . If
we are lucky, we may be able to postpone the constraint until we
have concrete values for the variables, and hence get away with
only some messy types. If not, we may not be able to write the
program we want.

For example, one would like the following function to be accepted
(with or without the type signature)

f :: Num a ⇒
Quantity a u → Quantity a v → Quantity a (u ⊛ v)

f x y = (x ⊛ y)⊕ (y ⊛ x )

but the units approach leads to an inferred type like this, involving
several internal type families used to implement normalisation:

(Num a
, [ ] ∼ Normalize (Normalize (d1 @@+ Reorder d2 d1)

@− Normalize (d2 @@+ Reorder d1 d2))
) ⇒ Qu d1 l a → Qu d2 l a
→ Qu (Normalize (d1 @@+ Reorder d2 d1)) l a

The crucial observation of this paper is that we need to introduce
support for a domain-specific equational theory. In the following
section, we will see how this is possible.

3. Domain-specific constraint solving

Haskell type inference is essentially a problem of generating and
solving constraints. These may be equalities, which arise from the
typing rules (e.g. in the application f x , the compiler must check
that f has a function type with domain equal to the type of x ), or
typeclass constraints, which arise from uses of overloaded func-
tions. Similarly, standard Hindley-Milner type inference amounts
to a constraint generation and solving process in which the solver
performs first-order unification (Sulzmann et al. 1999).

GHC uses the OutsideIn(X) algorithm (Vytiniotis et al. 2011) to
handle the constraints it generates. This is notionally parametric
in the choices of constraint domain X and solving algorithm, and
provides domain-independent conditions that the constraint solver
must satisfy. However, in practice there is only one choice for the
solver: GHC implements the solver for type equality constraints
(including type families) and typeclasses also described by Vytin-
iotis et al. (2011). To permit domain-specific equational theories,
this solver must be made user-extensible. The user is not expected
to replace the solver entirely, although the capability might be in-
teresting (e.g. to experiment with other algorithms).

In this section, I will describe how such a plugin constraint solver
works, first as a practical Haskell program interfacing with GHC,
then in the more formal theoretical setting of OutsideIn(X).

3.1 Plugging into GHC

Once GHC’s built-in constraint solver has finished its work, it is
left with a set of constraints that it could not solve. The job of a
plugin solver is to take this set of wanted constraints and either

• identify impossible constraints that GHC has failed to reject
outright, for example kg ⊛ kg ∼ m; or

• solve or further simplify the constraints, perhaps generating
others in the process.

When a plugin yields new constraints, the main GHC constraint
solver will be re-invoked in case it can make further progress, the
plugin will be called again, and so on.

To be more precise, a plugin solver is a Haskell function supplied
separately with ‘given’, ‘derived’8 and ‘wanted’ constraints:

solve :: [Ct ] → [Ct] → [Ct] → TcPluginM TcPluginResult
solve givens deriveds wanteds = ...

Here Ct is GHC’s internal type of constraints, TcPluginM is a
monad providing effects suitable for plugins, and TcPluginResult
captures possible outcomes of constraint solving:

data TcPluginResult
= TcPluginOk {solved :: [(EvTerm,Ct)],new :: [Ct]}
| TcPluginContradiction {impossible :: [Ct]}

The TcPluginOk case includes a list of solved constraints along
with associated evidence (to be discussed in subsection 3.1.2), and
a list of new constraints to be processed by the main solver. Note
that it is possible for ‘given’ or ‘derived’ constraints to be solved,
which simply means to drop them from consideration since they
provide no useful information (e.g. consider a ⊛ 1 ∼ a). The
result TcPluginOk [ ] [ ] indicates that no progress was made: no
constraints could be solved and no new constraints were generated.

The details of the TcPluginM monad interface is not important; a
few example type signatures are shown in Figure 1. These include

8 Derived constraints arise during the constraint solving process, e.g. from
functional dependencies; they will not be considered in any detail here.

4 2015/3/13



the ability to query the context (e.g. look up the definitions of types)
and perform IO operations (e.g. to communicate with an external
process). The ability to do IO is not used in uom-plugin (apart
from printing debug messages), but it is useful in other plugins.

Of course, plugins should be essentially pure, but this is a matter
for the plugin implementor. More generally, what does it mean for
a plugin to be well-behaved? One would expect it to be:

• pure, i.e. producing the same result for the same inputs;
• order-insensitive, i.e. regarding the constraint lists passed to the
solve function as sets (arguably the types should enforce this!);

• sound, i.e. claiming to solve constraints only if they can actually
be solved, to be elaborated on in subsection 3.1.2;

• most general, i.e. solving constraints without ‘guessing’, which
I will return to in section 4.

3.1.1 Plugin-aware constraint solving

The algorithm GHC uses when solving constraints in the presence
of a typechecker plugin is as follows:

1. Run the built-in constraint solver, producing a set of constraints
that it could neither solve nor show inconsistent.

2. Call the plugin with the remaining constraints:
• if it returns TcPluginContradiction, report the impossible

constraints and stop;
• if it returns TcPluginOk with some new constraints, remove

the solved constraints from the constraint set, add the new
ones, then start again from the beginning;

• otherwise, remove the solved constraints from the constraint
set and stop.

For example, suppose GHC has arrived at a point in the typecheck-
ing process where it has some type family F :: Unit → ∗, a given
constraint F (m⊘ s) ∼ () , an as-yet unsolved unification variable
α, and wanted constraints

F α ∼ ()
(α⊛ s) ∼ m

that have already been simplified as far as possible by the built-in
constraint solver. The plugin solver can now run and output a new
wanted constraint α ∼ m⊘ s, leading to the wanted constraints

F α ∼ ()
(α⊛ s) ∼ m
α ∼ (m⊘ s) .

Now the built-in solver can make further progress, substituting for
α and using the given constraint to discharge the first goal, leaving

(m⊘ s)⊛ s ∼ m

which can be solved directly by another run of the plugin solver.
Note that even this simple example involved two runs of the built-
in solver and two runs of the plugin; while that could be avoided
in this case if the plugin performed substitution and type family
reduction itself, in general we would not want plugins to have to
reimplement GHC’s entire solver!

Typeclasses D
Data types T
Type families F, G
Rigid variables a, b, c
Unification variables α, β, γ
Type variables x, y, z ::= a | α
Types τ ::= x | T | F τ | τ1 τ2 | . . .
Constraints Q ::= ϵ | Q1 ∧Q2 | τ1 ∼ τ2 | D τ
Substitutions θ, ϕ ::= [α 7→ τ ]
Top-level axiom schemes

Q ::= Q | Q1 ∧ Q2 | ∀ a .Q⇒ D τ | ∀ a . F τ ∼ τ

Figure 2. Syntax of OutsideIn(X) types and constraints

3.1.2 Evidence of soundness

If a plugin claims to have solved a constraint, why should we be-
lieve it? It would be very easy to produce a plugin that erroneously9

reported constraints as solved when in fact they were not, poten-
tially introducing type unsoundness and causing runtime crashes.
Fortunately GHC already has a mechanism for detecting such er-
rors: it does not merely typecheck code, but elaborates it into Sys-
tem FC (Sulzmann et al. 2007), a very explicit core calculus that
includes easily-checked evidence for type equality. While this does
not prevent all compiler bugs, it makes constraint solver misbe-
haviour easier to detect.

Thus the actual implementation of plugins demands evidence for
each constraint that the plugin claims to have solved. Some plugins
may not be able to generate bona fide evidence, in which case they
may use the equivalent of unsafeCoerce and assert a constraint
without proof. On the other hand, the author of a plugin is free
to create their own axiom schemes and build genuine evidence
from them10, in which case they can be sure of the type soundness
of the resulting system (provided the axioms they introduce are
consistent, of course!).

In the implementation, the type EvTerm returned with a constraint
in a TcPluginOk result represents terms in the evidence language.
Forms of evidence include variables, axioms, typeclass dictionaries
and a variety of deduction rules for equality proofs. I will not
consider evidence further here.

3.2 Plugging in to OutsideIn(X)

Having seen how the plugin mechanism works in practice, let us
step back and consider the theory justifying it. The OutsideIn(X)
framework expects a constraint solver which takes four inputs (with
the syntax given in Figure 2):

• user-defined top-level axiom schemes Q (e.g. from typeclass
and type family instances);

• ‘given’ constraints Qgiven known to be true locally (e.g. from
type signatures or GADT pattern matches);

• ‘touchable’ unification variables αtch (those for which the al-
gorithm is allowed to solve); and

• ‘wanted’ constraints Qwanted for which solutions are to be
found.

9 Or maliciously, though plugins are assumed to be trusted: they can run
arbitrary IO actions from within the typechecker, which is dangerous!
10 Modulo a limitation of the current implementation, which prevents cus-
tom axiom schemes being used across multiple modules.
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Q ∈ Q implies Q ⊩ Q (R1)
Q ⊩ Q1 and Q ∧Q1 ⊩ Q2 implies Q ⊩ Q2 (R2)
Q ⊩ Q implies θQ ⊩ θ Q (R3)

Q ⊩ τ ∼ τ (R4)
Q ⊩ τ1 ∼ τ2 implies Q ⊩ τ2 ∼ τ1 (R5)
Q ⊩ τ1 ∼ τ2 and Q ⊩ τ2 ∼ τ3 implies Q ⊩ τ1 ∼ τ3 (R6)
Q ⊩ Q1 and Q ⊩ Q2 implies Q ⊩ Q1 ∧Q2 (R7)
Q ⊩ τ1 ∼ τ2 implies Q ⊩ [a 7→ τ1] τ ∼ [a 7→ τ2] τ (R8)

Figure 3. Properties of entailment12

In response, the constraint solver must produce two outputs:

• a substitution θ for the touchable variables αtch; and
• residual constraints Qresidual that could not be solved (but may

have been simplified).

The behaviour of the constraint solver is described by the judgment

Q ; Qgiven ; αtch ⊢▶simp Qwanted ⇝ Qresidual ; θ

which must satisfy certain conditions in order for OutsideIn(X)
type inference to be sound and most general:11

(Soundness) Q ∧Qgiven ∧Qresidual ⊩ θ Qwanted

(Principality) Q ∧Qgiven ∧Qwanted ⊩ Qresidual ∧ Eθ

where Eθ = {α ∼ u | [α 7→ u] ∈ θ}

That is, the constraint solver must deliver a solution that is sound,
i.e. the residual constraints solve the original problem, and most
general, i.e. the simplifier has not ‘guessed’ any values for variables
or invented constraints not entailed by the original problem. Here
Q ⊩ Q is the constraint entailment relation, part of the X parameter
of OutsideIn(X), which satisfies the properties given in Figure 3.

3.2.1 Defining a plugin constraint solver

A plugin constraint solver can be simpler than the description in the
OutsideIn(X) framework, since it need not stand alone but will be
combined with the built-in solver. In particular, the plugin need not
deal with producing a substitution for unification variables directly.
Instead, it may simply add constraints that define variables.

Suppose we have a judgment form

Q ; Qgiven ; αtch ⊢▶p Qr ⇝ Qs

meaning that the constraints Qr can be simplified to Qs under the
given assumptions. Figure 4 shows how such a judgment can be
combined with the built-in solver judgment ⊢▶simp to produce
⊢▶psimp, which conforms to the OutsideIn(X) interface.13

The basic idea is that of the implementation, discussed in subsec-
tion 3.1.1: run the main constraint solver once, then pass the resid-
ual constraints to the plugin. If the plugin generates new constraints
(i.e. Qs ⊈ Qr), the GO rule applies and invokes the combined
solver judgment again. If not (i.e. Qs ⊆ Qr), the STOP rule will
simply return the remaining constraints.

11 There are also some technical conditions on the domain of the substitu-
tion, which require that it substitutes only for touchable variables not occur-
ring in the given or residual constraints.
12 Slightly reformulated from Vytiniotis et al. (2011)
13 The details of how to calculate the sets of touchable variables α1 and
α2 are omitted; it is straightforward but messy to add newly generated
unification variables and remove those that have been substituted away.

GO

Q ; Qg ; α0 ⊢▶simp Qw ⇝ Qr ; θ0
Q ; Qg ; α1 ⊢▶p Qr ⇝ Qs Qs ⊈ Qr

Q ; Qg ; α2 ⊢▶psimp Qs ⇝ Qt ; θ1

Q ; Qg ; α0 ⊢▶psimp Qw ⇝ Qt ; θ0 ◦ θ1|α0

STOP

Q ; Qg ; α0 ⊢▶simp Qw ⇝ Qr ; θ
Q ; Qg ; α1 ⊢▶p Qr ⇝ Qs Qs ⊆ Qr

Q ; Qg ; α0 ⊢▶psimp Qw ⇝ Qs ; θ

Figure 4. Plugin-extended OutsideIn(X) solver

Note that this process can be iterated, starting with the basic solver
and extend it with multiple plugins.

The combined judgment ⊢▶psimp will satisfy the OutsideIn(X) con-
ditions on the assumption that ⊢▶simp satisfies them, and provided
that ⊢▶p satisfies the conditions

(Plugin soundness) Q ∧Qgiven ∧Qs ⊩ Qr

(Plugin principality) Q ∧Qgiven ∧Qr ⊩ Qs

i.e. Qr and Qs should be equivalent under the given constraints. In
section 4.3 I will show that the units of measure plugin I am about
to describe satisfies the soundness condition as-is, but satisfies only
a weakened form of the principality condition.

4. Units of measure as a typechecker plugin

Having seen the general structure of typechecker plugins, let us
consider a specific example. The uom-plugin constraint solver is
designed to deal with equality constraints between types of kind
Unit. Essentially it performs equational unification for the theory of
free abelian groups. Recalling the earlier example, GHC’s built-in
constraint solver might have been left with the unsolved constraint

Base "m"⊛ Base "kg" ∼ Base "kg"⊛ Base "m"

but it is easy to see that this constraint is trivial simply by normal-
ization up to the group axioms.

For constraints involving unification variables, Kennedy (1996,
2010) describes an algorithm for AG-unification that proceeds by
a variant of Gaussian elimination, and shows how to extend this
to types containing units of measure. For example, given the con-
straint

α⊛ α ∼ β ⊛ β ⊛ β
the most general solution is

α ∼ γ ⊛ γ ⊛ γ, β ∼ γ ⊛ γ
for some fresh unification variable γ. Since AG-unification is de-
cidable and possesses most general unifiers, type inference in an
ML-like setting is well-behaved, though the let-generalisation step
is slightly subtle (Gundry 2013).14

The situation is slightly more complex in the case of the full GHC
Haskell type system, in particular because of the possible pres-
ence of universally quantified variables, type families and local
constraints. Thus the plugin constraint solver may encounter con-
straints like

a ⊛ a ∼ b ⊛ b ⊛ b

14 GHC no longer generalises let-bindings by default in the presence of type
families or GADTs, for essentially the same reason.
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Unit constraints U ::= ϵ | U1 ∧ U2 | u1 ∼ u2

Unit normal forms u ::= r | 1 | u1 · u2 | u−1

Atoms r ::= x | b | F(τ)
Base units b ::= kg | m | . . .

Figure 5. Syntax of unit constraints

where a and b are (universally quantified) rigid variables, or

F a ⊛ F b ∼ F b ⊛ F a

where F is a user-defined type family. Moreover, it has to deal with
constraints that are ‘given’ as well as ‘wanted’, so it must simplify
hypotheses as well as solving goals.

The essence of the plugin’s constraint solving algorithm is to

1. identify unsolved equality constraints between units;

2. normalize both sides of each constraint up to the group axioms;

3. incrementally simplify given constraints by rewriting them to
simpler, equivalent constraints;

4. incrementally simplify wanted constraints, making use of the
information from simplifying the givens.

For example, the wanted constraint α⊛α ∼ (β ⊛ β)⊛ β equates
two types of kind Unit, which normalize to give α2 ∼ β3. Normal
forms will be written in mathematical notation, to contrast them
with Haskell type expressions. The syntax of normal forms is given
in Figure 5, but they will be treated as equivalent up to the group
axioms in Figure 6 (e.g. 1 and x · x−1 denote the same unit). I use
U for constraints Q that include only equations between units.

Once normalized, the constraint α2 ∼ β3 can first be rewritten to
α2 · β−3 ∼ 1. This can be simplified by substituting by α ∼ γ · β
where γ is fresh, leading to γ2 · β−1 ∼ 1. Rearranging this gives
β ∼ γ2. Hence the solution is α ∼ γ3 ∧ β ∼ γ2.

The presence of universally quantified variables or type families
means that some constraints may not be solved immediately, but
they may become feasible once other information has become
available. This motivates a dynamic unification algorithm: one that
makes progress on some constraints in the hope that others may
become easier to solve. Since each step replaces a constraint with
an equivalent constraint (up to the equational theory), it is most
general, and so we can apply simplification steps in any order.

4.1 The constraint solving algorithm

For units of measure unification, the algorithm is given by the rules
in Figure 7, which define the relation U0 7→ z U1 (θ, ϕ). This
explains how to rewrite a unit constraint U0 into a new constraint
U1 and a pair of substitutions (θ, ϕ) that express the equivalence
of the original and simplified constraints, modulo the group laws.
The list of type variables z records those that may not be modified
during unification, including both rigid and unification variables.15

In the interests of simplicity, failure is not represented explicitly
here, although in practice it is useful to identify obviously impossi-
ble constraints (such as kg ∼ m), and the implementation does this
using the TcPluginContradiction result (see subsection 3.1).

Rule (1) simply ensures that all unit equations are in the form
u ∼ 1. Rule (2) solves trivial equations; since unit normal forms

15 Parameterising by forbidden rather than touchable variables is merely a
notational shortcut, to save changing the set when adding a fresh variable.

ASSOCIATIVE

Q ⊩ u1 ⊛ (u2 ⊛ u3) ∼ (u1 ⊛ u2)⊛ u3

IDENTITY

Q ⊩ u⊛ 1 ∼ u

COMMUTATIVE

Q ⊩ u1 ⊛ u2 ∼ u2 ⊛ u1

INVERSE

Q ⊩ u⊛ (1⊘ u) ∼ 1

TORSION-FREE
Q ⊩ u⊛ u⊛ · · ·⊛ u ∼ 1

Q ⊩ u ∼ 1

Figure 6. Constraint entailment rules for units

are being considered up to the abelian group laws, this includes
cases such as α · α−1 ∼ 1.

Rule (3) is the first to produce an output substitution, in the case
where some variable can be instantiated to solve the equation. For
example, m4 · α2 ∼ 1 is solved by substituting [α 7→ m2]. Of
course, the variable must not belong to the list of fixed variables z.
Again this rule is interpreted up to the group laws.

The most complex rule is (4), which shows how progress can be
made in cases where rule (3) does not apply and so the equation
cannot immediately be solved. It relies on the fact that any unit can
be expressed as a product of distinct atoms ri11 · · · rinn . By replacing
x with a fresh variable y multiplied by a suitably-chosen unit v,
the exponents of the atoms can be reduced. Note that y should be
a rigid variable iff x is rigid. For example, this rule introduces a
fresh variable c to simplify a2 · b−3 ∼ 1 to c2 · b ∼ 1 with
θ = [a 7→ c · b2], ϕ = [c 7→ a · b−2].

Rule (5) says that a conjunction of constraints can be simplified
by simplifying one and applying the resulting substitution to the
other. Just as units are considered up to the abelian group laws,
conjunctions should be treated as sets, so this rule allows any
constraint to be simplified.

The rules can be iterated in the obvious way to define a relation
U 7→∗

z U ′ (θ, ϕ) that makes multiple simplification steps, com-
posing the resulting substitutions.

4.2 Instantiating the OutsideIn(X) plugin framework

Recall that a plugin must supply a judgement

Q ; Qg ; αtch ⊢▶p Qr ⇝ Qs

that explains how the given constraints Qg and wanted constraints
Qr are simplified to produce the residual constraints Qs. This
judgment is defined by

Ug 7→∗
· U

′
g (θg, ϕg) θg Uw 7→∗

z U
′
w (θw, ϕw)

z = fv(θgUw) ∪ fuv(θgUw) \ αtch

Q ; Qg ∧ Ug ; αtch ⊢▶p Qw ∧ Uw ⇝ Qw ∧ ϕg (U
′
w ∧ Eθw )

where Qg and Qw are the non-unit given and wanted constraints,
respectively, and Eθ = {α ∼ u | [α 7→ u] ∈ θ} is the constraint
form of a substitution θ.

This rule assumes without loss of generality that the unit constraints
Ug and Uw are already in normal form; this is justified since every
type of kind Unit is provably equal to its normal form according to
the entailment relation.

First, the given unit constraints Ug are rewritten according to the
simplification rules in Figure 7 until no more rules apply. This pro-
duces a substitution θg that may eliminate some rigid variables,
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u ∼ v 7→ z u · v−1 ∼ 1 (·, ·) if v ̸≡ 1 (1)

1 ∼ 1 7→ z ϵ (·, ·) (2)

xk · uk ∼ 1 7→ z ϵ ([x 7→ u−1], ·) if x /∈ z (3)

xk · ri11 · · · rinn ∼ 1 7→ z yk · ri1 mod k
1 · · · rin mod k

n ∼ 1 ([x 7→ y · v], [y 7→ x · v−1]) if x /∈ z, ∃j. |k| ⩽ |ij |, y fresh, (4)
v = r

−⌊i1/k⌋
1 · · · r−⌊in/k⌋

n

U0 ∧ U1 7→ z U ′
0 ∧ θU1 (θ, ϕ) if U0 7→ z U

′
0 (θ, ϕ) (5)

Figure 7. Plugin constraint-solving algorithm

possibly generating some fresh rigid variables in the process, but
with a substitution ϕg that relates them back to the original vari-
ables. Here z is empty because rigid variables may be simplified
using the given constraints; they will contain no unification vari-
ables. The simplified givens U ′

g are discarded.

Next, the substitution θg is applied to the wanted unit constraints
Uw (in order to eliminate rigid variables if possible), then they
are rewritten according to the algorithm, producing a simplified
set of constraints U ′

w and a substitution θw. At this point, only the
‘touchable’ unification variables may be instantiated, so z contains
all the free variables that are not listed in αtch.

Finally, the residual constraints returned by the rule consist of the
unchanged non-unit wanteds Qw, the simplified unit wanteds U ′

w

and the constraint form of the substitution θw. The substitution
ϕg , which eliminates any fresh rigid variables introduced when
simplifying the unit givens, is applied where necessary.

For example, suppose we have

Ug = {a2 ∼ b3}, Uw = {γ3 ∼ a}, αtch = {γ}
where a and b are rigid variables and γ is a unification variable.
Rewriting the given constraint generates a fresh rigid variable c and
produces θg = [a 7→ c−3, b 7→ c−2], ϕg = [c 7→ a·b−2]. Applying
θg leaves us with the wanted constraint γ3 ∼ c−3, which is easily
solved by θw = [γ 7→ c−1]. In order to eliminate the variable c
introduced by simplifying the given constraint, we apply ϕg , so we
end up with the solution ϕgθw = [γ 7→ a−1 · b2].

4.3 Soundness and generality

As discussed in subsection 3.2, OutsideIn(X) type inference is
sound (i.e. it infers correct types for terms) and delivers principal
types (i.e. any type that can be given to the term is an instance of the
inferred type), under certain assumptions on the behaviour of the
simplifier. These assumptions lead to conditions that the algorithm
described above must satisfy.

The conditions are formulated in terms of the⊩ relation, which sat-
isfies the properties in Figure 3. To justify the soundness and gen-
erality of the plugin, additional inference rules are required stating
that Unit is an abelian group, as shown in Figure 6. The ASSOCIA-
TIVE, IDENTITY, COMMUTATIVE and INVERSE rules are the usual
abelian group laws; the role of TORSION-FREE (characterising free
abelian groups) will be discussed later.

Type safety depends on the fact that the ⊩ relation is consistent (i.e.
it cannot prove that two observably distinct types are equal). Con-
sistency is not threatened by the group laws, because they refer only
to type families without equations (as defined in subsection 2.1). If
⊛ was a constructor rather than a type family, however, it would be
possible to derive a contradiction.

To simplify the technical development, in the the following I as-
sume that the constraint entailment relation ⊩ satisfies the follow-

ing condition. This holds for the concrete entailment relation used
by Vytiniotis et al. (2011).

Suppose Q ⊩ Eθ . Then Q ⊩ θ Q if and only if Q ⊩ Q, (P)
and Q ∧ θQ ⊩ Q′ iff Q ∧Q ⊩ Q′.

The basic result about the rewrite system needed to show that so-
lutions are both sound and most general is the following, which
amounts to showing that rewriting produces equivalent constraints,
assuming the appropriate substitution holds as a collection of equa-
tions in each direction. I will write Q0 ↔ Q1 to mean that the
constraints Q0 and Q1 are equivalent in the sense that Q0 ⊩ Q1

and Q1 ⊩ Q0.

Lemma 1 (Soundness and generality of unification steps). If
U0 7→ z U1 (θ, ϕ) then U1 ∧ Eθ ↔ U0 ∧ Eϕ.

Proof. By induction on the definition of the 7→ relation.

For rule (1), we need to show u · v−1 ∼ 1 ↔ u ∼ v, which
follows straightforwardly from the group axioms. Similarly, rule
(2) is trivial.

For rule (3), the interesting part is showing xk ·uk ∼ 1 ⊩ x ∼ u−1.
The TORSION-FREE rule means that (x·u)k ∼ 1 implies x·u ∼ 1.

For rule (4), we must show that

yk · w ∼ 1 ∧ x ∼ y · v ↔ xk · ri11 · · · rinn ∼ 1 ∧ y ∼ x · v−1

where v = r
−⌊i1/k⌋
1 · · · r−⌊in/k⌋

n andw = ri1 mod k
1 · · · rin mod k

n ,
which follows from the fact that ri11 · · · rinn ∼ v−k · w.

For rule (5), we must show U ′
0 ∧ θ U1 ∧ Eθ ↔ U0 ∧ U1 ∧ Eϕ.

By induction we have U ′
0 ∧ Eθ ↔ U0 ∧ Eϕ, and property (P) gives

θ U1 ∧ Eθ ↔ U1.

In addition, the following lemma shows the relationship between
the two substitutions θ and ϕ produced by the algorithm: applying
ϕ to θ yields equations that follow from the input constraints U0.

Lemma 2. If U0 7→ z U1 (θ, ϕ) then U0 ⊩ Eϕ◦θ .

Proof. By induction on the definition of the 7→ relation. The only
rules that extend the substitution θ are (4), for which x ∼ u−1

follows by TORSION-FREE, and (5), for which the composition is
[y 7→ x · v−1] ◦ [x 7→ y · v] = [x 7→ (x · v−1) · v], the identity up
to the group axioms.

From these results, which extend inductively in the obvious way
to multiple reduction steps, it follows that the constraint solver is
sound in the sense required by OutsideIn(X).

Theorem 1 (Soundness). If Q ; Qg ; αtch ⊢▶p Qw ⇝ Qr then
Qg ∧Qr ⊩ Qw.

Proof. We need to show that

Q ∧ (Qg ∧ Ug) ∧Qw ∧ ϕg (U
′
w ∧ Eθw ) ⊩ Qw ∧ Uw
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and since Qw ⊩ Qw it is sufficient to show

Ug ∧ ϕg (U
′
w ∧ Eθw ) ⊩ Uw.

We are justified in reasoning up to unit normal forms since if u
and v are equivalent normal forms then ϵ ⊩ u ∼ v so (R8) gives
ϵ ⊩ [a 7→ u] τ ∼ [a 7→ v] τ .

Lemma 1 gives θg Uw ∧ Eϕw ↔ U ′
w ∧ Eθw , so from (R3) we

have ϕg (U
′
w ∧ Eθw ) ⊩ ϕg (θg Uw). Moreover Lemma 2 gives

Ug ⊩ Eϕg◦θg , so property (P) gives the required entailment.

Principality is more interesting, however. This requires that the
constraint solver delivers most general solutions, which intuitively
means that it makes no ‘guesses’ that are not implied by the orig-
inal wanted constraints. Vytiniotis et al. (2011) define ‘guess-free
solutions’ as those where the wanted constraints entail the residual
constraints; for the plugin this amounts to requiring

Q ∧ (Qg ∧ Ug) ∧ (Qw ∧ Uw) ⊩ Qw ∧ ϕg (U
′
w ∧ Eθw ).

Unfortunately, this is not true! Consider the sole wanted constraint
α2 ∼ β3, which according to the algorithm in Figure 7 can be
solved by [α 7→ γ3, β 7→ γ2] where γ is a fresh unification
variable. The guess-free solution condition would require us to
show

α2 ∼ β3 ⊩ α ∼ γ3 ∧ β ∼ γ2,

and this is simply not derivable, because the fresh variable γ has
been conjured out of thin air.

So what has become of the claim that the steps of the algorithm
described above are all most general? The unifier delivered for
α2 ∼ β3 is indeed the most general unifier, in the sense that
any unifying substitution for this equation must agree with it up
to the laws of an abelian group. The fresh variable γ is not really
free: it is constrained by the group laws to be α · β−1, but the
definition of guess-free solutions does not allow us to make use
of that knowledge.

Instead, we can prove a weaker result:

Theorem 2 (Generality). If Q ; Qg ; αtch ⊢▶p Qr ⇝ Qs then
Qg ∧Qr ⊩ ψQs for some subsitution ψ for the freshly introduced
variables, i.e. with domain fuv(Qs) \ fuv(Qr).

Proof. Taking ψ = ϕw we must show that

Q ∧ (Qg ∧ Ug) ∧ (Qw ∧ Uw) ⊩ ϕw (Qw ∧ ϕg (U
′
w ∧ Eθw ))

is derivable. Now dom(ϕw)# fuv(Qw) and Qw ⊩ Qw, so it is
enough to show Ug ∧ Uw ⊩ ϕw ϕg (U

′
w ∧ Eθw ).

Lemma 1 gives θg Uw ∧ Eϕw ↔ U ′
w ∧ Eθw , so by (R3) we

have ϕw ϕg (θg Uw ∧ Eϕw ) ↔ ϕw ϕg (U
′
w ∧ Eθw ), which im-

plies that ϕw ϕg θg Uw ⊩ ϕw ϕg (U
′
w ∧ Eθw ). Now we must have

dom(ϕw)# fuv(ϕgθg Uw) so ϕg θg Uw ⊩ ϕw ϕg (U
′
w ∧ Eθw ).

Moreover Lemma 2 gives Ug ⊩ Eϕg◦θg so we can deduce the re-
quired entailment using property (P).

That is, the solution found by the algorithm may not be guess-
free in the original sense, but there is some subsitution for the
fresh variables it introduces by which it can be transformed into
a guess-free solution. I conjecture that this weaker property is in
fact sufficient for the proof that OutsideIn(X) type inference (if it
succeeds) delivers principal types.16

The underlying problem here is that OutsideIn(X) does not have a
clear notion of scope for type variables: it is not the case that

α2 ∼ β3 ↔ α ∼ γ3 ∧ β ∼ γ2,

16 Theorems 3.2 and 5.2 of Vytiniotis et al. (2011)

but rather we must contextualise the variables, as in

∃α.∃β. α2 ∼ β3 ↔ ∃α.∃β.∃γ. α ∼ γ3 ∧ β ∼ γ2.

In fact the same problem shows up in the algorithm described
by Vytiniotis et al. (2011), which reduces the wanted constraint
F(G(x)) ∼ y to F(β) ∼ y ∧ G(x) ∼ β where F and G are type
families and β is a fresh unification variable; it would appear that

F(G(x)) ∼ y ̸⊩ F(β) ∼ y ∧ G(x) ∼ β

contrary to their Lemma 7.2.

On another note, observe that the proofs relied on an additional
rule, TORSION-FREE, beyond the usual laws of an abelian group.
This is crucial for proving both that solutions to wanted constraints
are most general, and that simplifications of given constraints are
sound. It amounts to restricting models of Unit to being free abelian
groups, i.e. those generated by the base units and abelian group
laws but with no other equations.17

Without TORSION-FREE, the addition of an axiom kg ⊛ kg ∼ 1

would be consistent, but then it would no longer be most general to
solve the wanted α ⊛ α ∼ 1 with α ∼ 1, nor would it be sound
to simplify the given a ⊛ a ∼ 1 to a ∼ 1, as in either case kg is
an alternative solution.

5. Related work

The design of uom-plugin owes a lot to Andrew Kennedy’s im-
plementation of units of measure in F#, and Richard Eisenberg’s
unitsHaskell library. I compare it with each of them in turn. While
there are several other Haskell libraries for units of measure18, mak-
ing slightly different design choices, units represents the state of
the art and the comparison is broadly representative.

5.1 Units of measure in F#

The plugin described in this paper provides support for units
of measure that is inspired by, and broadly comparable with,
Kennedy’s implementation in F#: constants and numeric types
can be annotated with their units, units may be polymorphic, and
unit equations that arise during typechecking are solved by abelian
group unification. However, working in a Haskell setting introduces
many new feature interactions to explore, notably with typeclasses,
GADTs, type families, higher-kinded and higher-rank types. For
example, Haskell allows definitions that are polymorphic in type
constructors of kind Unit → ∗.

On the other hand, while the GHC typechecker plugins support
makes some exciting new things possible, there is still more work
to do before a plugin can extend GHC with a completely new lan-
guage feature. In particular, Template Haskell quasiquotation al-
lows the introduction of new syntax (e.g. for expressions contain-
ing quantities with units, or types mentioning units), but this syntax
will not be used in output (such as error messages or inferred types).
Thus the user can write

[u| 5m/s |] :: Quantity Int [u|m/s |]

but the inferred type of this expression is the less easy to read

Quantity Int (Base "m"⊘ Base "s")

17 Free abelian groups are always torsion-free, and torsion-free finitely
generated abelian groups are free.
18 Notably dimensional by Björn Buckwalter (https://dimensional.
googlecode.com/) and unittyped by Thijs Alkemade (https://
bitbucket.org/xnyhps/haskell-unittyped/).
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Moreover, there is no way to simplify an inferred type in a domain-
specific manner. Thus a type may be presented as

Num a ⇒ Quantity a (Base "s"⊛ (Base "m"⊘ Base "s"))

rather than the (equivalent)

Num a ⇒ Quantity a (Base "m")

It should be relatively straightforward to extend GHC’s plugin
support to allow extensions to pretty-printing and presentation of
inferred types, but there will always be limitations of the plugin
technique compared to building support into the language, as in
F#.

5.2 The units package

Another key inspiration for this work is Richard Eisenberg’s units
library (Muranushi and Eisenberg 2014), which is the state of the
art as far as units of measure in Haskell are concerned. As discussed
in section 2.3, uom-plugin is able to achieve better type inference
behaviour and more comprehensible error messages than units
thanks to the use of a typechecker plugin, rather than encoding
everything using type families and other existing GHC features.
On the other hand, since units does not require a plugin it is more
broadly compatible and avoids the potential for plugin-introduced
bugs. Moreover, it makes use of Template Haskell to permit a
relatively nice input syntax.

Another crucial difference in library design is that units is based
around working with dimensions (such as length and mass), rather
than units directly. A dimension has a ‘canonical’ unit that deter-
mines how quantities are represented, but they may be introduced
or eliminated using other units, with appropriate conversions per-
formed automatically. There is even support for working with mul-
tiple local coherent systems of units (choices of canonical units for
dimensions) in different parts of a single program. This allows code
to be typechecked for dimension safety, but remain polymorphic in
the particular units, and makes it easier to avoid numeric overflow
errors when working with quantities at vastly different scales.

In the interests of simplicity, the uom-plugin library follows F#’s
approach of indexing types by units of measure alone, not including
dimensions, but the approach described in this paper should be able
to scale to handle dimensions. The best way to represent them, and
provide features such as automatic conversion between units of the
same dimension, is a matter of ongoing work.

6. Conclusion

In this paper, I have introduced the notion of typechecker plugins
both as an implementation technique in GHC and in terms of
the OutsideIn(X) framework. I have made use of this to define a
library for units of measure with good type inference properties, in
particular the ability to find most general solutions to constraints
arising from unit polymorphism.

Practical use of plugins is still at an early stage, as they are quite
low level and closely tied to GHC’s constraint solver. There is much
to do to build better abstractions on top of the low-level interface,
and hence make it easier to write plugins without deep knowledge
of GHC. Termination of constraint solving in the presence of plug-
ins is a particularly tricky issue. It is quite easy for a poorly written
plugin to create an infinite loop, for example by emitting a new but
trivial constraint each time it is invoked. Moreover, while evidence
generation gives some indication of soundness (albeit not consis-
tency of the axiom system used to produce the evidence), it is hard
to ensure that plugins deliver most general solutions to constraints.

Two main avenues for future work are extending the uom-plugin
library itself, and adding features to GHC that make more powerful
plugins possible. I will consider these, then suggest some possible
other applications for the concept of typechecker plugins.

6.1 Further support for units of measure

Evidence generation The prototype units of measure plugin does
not yet support evidence generation (see subsection 3.1.2); rather,
it follows the method of proof by blatant assertion. In principle it
should be possible to generate proofs based on the abelian group
axioms from Figure 6. This would allow GHC’s -dcore-lint
option to check that the plugin is generating correct output.

Automatic conversion inference As observed above, represent-
ing dimensions and inferring conversions between quantities of the
same dimension is a matter of ongoing investigation. This is not
essential, because the user can always write their own conversions,
but it would be better if they were able to write something like

r = convert ([u| 10 ft/min |])⊛ [u| 5 s |]⊕ [u| 42m |]

and have the compiler automatically insert the conversion from
ft/min to m/s.

One way to encode such automatic conversions is through the def-
inition of a pair of additional type families: Pack, which converts
a list of (base unit, integer exponent) pairs into the corresponding
unit, and Unpack, which represents a fully known unit as a list of
such pairs (in a canonical order). Thus we have:

type family Pack (xs :: [(Symbol, Integer)]) :: Unit where
Pack [ ] = 1

Pack ((b, i) : xs) = (Base b ? i)⊛ Pack xs

type family Unpack (u :: Unit) :: [(Symbol, Integer)]

Pack [("m",Pos 2), ("s",Neg 1)]
= Base "m" ? 2⊘ Base "s"

Unpack (Base "m" ? 2⊘ Base "s")
= [("m",Pos 2), ("s",Neg 1)]

(Here ? represents exponentiation for units.)

Pack can be defined via a standard closed type family, but Unpack
must be defined specially by the plugin because it observes the
structure of the unit. It repects the equational theory on units, and
hence does not break type soundness. Together, these type families
make it possible to encode the convert function and other advanced
features using existing GHC Haskell type-level programming tech-
niques. However, once more it becomes a challenge to make error
messages simple and comprehensible. It is an interesting challenge
to extend the units of measure library further while maintaining a
suitable balance between features implemented in the plugin and
those encoded using existing functionality.

Construction of quantities It is slightly unsatisfying that con-
structing literal quantities in a safe way fundamentally requires
Template Haskell, rather than it providing mere syntactic sugar.
One alternative is to expose the MkQuantity constructor to the
user, and require them to follow a suitable syntactic discipline in
its use: always instantiating its type to concrete units. A way to lift
this restriction would be beneficial, but by no means essential.

Termination and completeness On a more theoretical note, it
would be nice to prove that the plugin-extended constraint solver
terminates, and is complete in an appropriate sense. Unfortunately,
both of these are tricky issues in OutsideIn(X) even before plugins
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are added, and modular reasoning about termination is particularly
difficult.

Extending the algebraic structure Finally, while indexing quan-
tities by a single abelian group of units is a reasonable point in the
design space, there are other choices for the model of units and
quantities. In particular, two oft-requested additional features are
support for fractional units and alternative origins. Fractional units
are sometimes useful, such as

√
Hz (i.e. Hz1/2), which arises when

quantifying electronic noise levels. F# 4.0 has recently gained sup-
port for fractional units. Units of temperature are the most obvi-
ous example where multiple origins need to be considered, since
0C ≈ 273K. It may be possible to handle these by indexing quan-
tities by an abelian group of translations (Atkey et al. 2013) in ad-
dition to units.

6.2 Extensions to the plugins mechanism

Apart from the constraint solver, there are many other points where
it would be useful for typechecker plugins to be able to extend the
compiler with domain-specific behaviour:

• control over simplification and presentation of inferred types,
as discussed in section 5.1;

• easily defining special reduction behaviour for type families,
such as the Unpack type family described in section 6.1;

• manipulating error messages, for example so that a DSL imple-
mentor can provide domain-specific guidance on likely reasons
for a certain class of error, along the lines of error reflection in
Idris (Christiansen 2014);

• generating new definitions for each module of the program.

6.3 Other plugins

This paper described a plugin to support units of measure in GHC,
and Iavor Diatchki and Eric Seidel are working on a plugin that
handles constraints involving type-level natural numbers by calling
out to an SMT solver19. There are many other potential applica-
tions, however:

• Making type inference more powerful, e.g. by treating certain
type families as injective, along the lines of Jan Stolarek’s
ongoing work on InjectiveTypeFamilies20;

• Effect tracking: indexing a monad by the available effects, using
a solver for a theory of sets, maps or boolean rings;

• Integers (as opposed to natural numbers) in types, with a solver
based on ring unification;

• Typeclasses with non-standard search strategies, rather than the
usual instance search, such as Coercible (Breitner et al. 2014);

• The Typeable class for runtime type representation (Lämmel
and Peyton Jones 2003);

• Adding η-laws for type-level tuples or record types;
• Record system extensions, such as extensible records via row

polymorphism, or the proposed OverloadedRecordFields
extension.21

19 https://github.com/yav/type-nat-solver
20 https://ghc.haskell.org/trac/ghc/wiki/
InjectiveTypeFamilies
21 https://ghc.haskell.org/trac/ghc/wiki/Records/
OverloadedRecordFields

In particular, it would be interesting to try factoring out an exist-
ing piece of GHC functionality (such as the Coercible or Typeable
typeclasses) into a plugin, increasing modularity. Indeed, in princi-
ple one could imagine disabling the entire built-in constraint solver,
allowing experimentation with alternative algorithms, although this
is likely to be practically difficult as it would require the plugin to
represent substitutions more directly.

More generally, the existing typechecker plugin interface is at a rel-
atively low level, requiring the plugin implementer to have a fairly
detailed knowledge of the way type inference is implemented in
GHC (e.g. to generate evidence using its internal data types). A
broader challenge for future work is to find a suitable interface
that is both powerful enough to implement special-purpose con-
straint solver behaviour, and simple enough to make the creation of
domain-specific constraint solvers accessible to more users. Hope-
fully it should be possible to build such a higher-level interface on
top of the existing typechecker plugins support in GHC.
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