
Explicit Level Imports

Matthew Pickering1, Rodrigo Mesquita1, and Adam Gundry1

Well-Typed LLP {matthew,rodrigo,adam}@well-typed.com

Abstract. Cross-stage persistence rules are commonly admitted in multi-
stage programming languages. These rules codify the assumption that all
module and package dependencies are available at all stages. However,
in practice, only a small number of dependencies may be needed at each
particular stage.
This paper introduces Explicit Level Imports, a mechanism which gives
programmers precise control about which dependencies are required at
each stage. Imports are annotated with a modifier which brings identifiers
into scope at a specific level. This precision means it is straightforward
for the compiler to work out what is exactly needed at each stage, and
only provide that. The result is faster compilation times and the potential
for improved cross-compilation support.
We have implemented these ideas in GHC Haskell, consider a wide variety
of practical considerations in the design, and finally demonstrate that the
feature solves a real-world issue in a pragmatic way.

Keywords: Staging · Modules · Compile-time code generation · Haskell

1 Introduction

Haskell is a pure, lazy, functional programming language that supports compile-
time code generation using staged metaprogramming, a feature called Template
Haskell [11]. Staged compilation enables writing code-generating programs (meta-
programs) in a safe and expressive way, by writing programs in the host language
that themselves generate host language programs.

In practice, the primary use of Template Haskell is to avoid writing boiler-
plate. Programmers, in their libraries, write metaprograms that accept program
fragments as inputs (typically a representation of a type), and generate code
that is needed to use that library. Template Haskell is used to generate type
class instance definitions, generate lenses for use as record accessors, and many
other mundane tasks. This common pattern looks like the following:

import Control .Lens.TH (makeLenses)
import App (S)
data T = MkT { foo :: S }
$(makeLenses ′′T) -- generates foo :: Lens T S

Here the makeLenses function is imported from a library, and used in a declara-
tion splice to generate some definitions (here a lens binding, but a similar pattern

2 M. Pickering et al.

is often used for TH-based deriving of type class instances). The function call
makeLenses ′′T will be evaluated at compile-time, during the compilation of the
containing module, and its result will be a representation of declarations to be
inserted into the program at the location of the splice.

At the moment, the compiler must generate executable code for the depen-
dent module App before it starts type-checking this module, because in principle,
running the splice might end up executing code from App. This has a variety of
negative consequences:

– Using Template Haskell causes compile-time performance to suffer due to
unnecessary (re)compilation. This is particularly relevant for interactive use
of the compiler within an IDE such as Haskell Language Server.

– Cross-compilation is significantly complicated by the need to compile and
execute code on the target platform during the build process, as there is no
way to execute splices on the host.

– Modules needed exclusively at compile-time must still be linked into the final
executable, since any imported module could be used at runtime.

The primary idea of this paper is that the language should make it evident to
the compiler which dependencies are needed at runtime and which are needed at
compile-time. Once the programmer can be explicit about when each dependency
is needed, then the compiler can provide just what is required.

Our proposed language extension will allow the programmer to be explicit
about the fact that makeLenses is used only in a splice, whereas App is imported
normally and is definitely not executed in splices:

import splice Control .Lens.TH (makeLenses)
import App (S)

Not only does this make the code easier to understand, but moreover the com-
piler can now tell from the imports that the module depends only on the inter-
face of App, not on its implementation. Correspondingly, it is possible to start
type-checking the module as soon as App has been type-checked (before code
generation has been completed), and changes to the implementation of App that
do not affect its interface do not cause recompilation of the importing module.

In practice, many Haskell programs enable TemplateHaskell solely to be
able to call functions from external packages in top-level splices. Thus versions
of this example occur frequently, and using the new feature will merely require
the programmer to add the splice keyword to a few imports.

1.1 Contributions

In a staged programming language, the type checker uses a level discipline to
ensure that evaluation is well-staged [16]. All variables are introduced at a level,
and program contexts require variables to be used at a specific level. The result
is a system guaranteeing that compile-time fragments (top-level splices) can be
fully evaluated before any runtime fragments (the normal program).

Explicit Level Imports 3

Cross-stage persistence (CSP) rules allow the transport of variables between
levels. The admitted CSP rules place constraints on the implementation of the
language. For GHC Haskell, baked into the current CSP rules is the assumption
that if module M depends on N, then N must be compiled before M, and there-
fore M is free to use anything from N at compile-time. As demonstrated by the
previous example, this is a powerful assumption and a strong constraint on the
implementation, as admitting this rule requires all dependencies to be compiled,
available and ready for compile-time evaluation.

Our first contribution is to name and identify ImplicitStagePersistence

as a potentially undesirable language feature, and one from which programmers
should be able to opt out. Under our new feature NoImplicitStagePersistence,
imported identifiers are restricted to being used only at the level they are ex-
plicitly bound at (thus forbidding imported identifiers from occurring within
top-level splices or quotes by default). See Section 3.

Once ImplicitStagePersistence is controlled, programmers will not get
very far writing metaprograms, as CSP is used ubiquitously to transport im-
ported variables between levels. Therefore we also introduce a language exten-
sion ExplicitLevelImports, which provides explicit annotations on imports to
make variables available at a specific level:

– import splice A will make bindings from A available in top-level splices.
– import quote B will make bindings from B available in quotations.

These extensions will both be specified precisely in terms of levels in Section 4.

Together, NoImplicitStagePersistence and ExplicitLevelImports solve
the shortcomings of Template Haskell presented above, by introducing a finer-
grained mechanism for the programmer to control the level at which imported
identifiers are introduced, and by restricting identifiers used in expressions to
those explicitly bound at the correct level. We have implemented these extensions
in the Glasgow Haskell Compiler (GHC) and proposed them to the GHC Steering
Committee to be officially accepted as GHC extensions.1

2 Background

In this paper we are mostly concerned with untyped Template Haskell [11], an
extension to Haskell [5] that adds support for metaprogramming.

Template Haskell has support for generating and inspecting expressions, dec-
larations, patterns, types and names. Quotations in these contexts allow users
to inspect and manipulate the syntax of these forms, and splices allow users to
combine syntax together in order to form larger programs. By judicious combi-
nation of quotes and splices, the user writes a program generator (metaprogram)
that will be executed during compilation in order to generate part of the final
program.

1 See GHC Proposal #682: Explicit Level Imports.

https://github.com/ghc-proposals/ghc-proposals/pull/682

4 M. Pickering et al.

2.1 Syntax

An expression e :: a can be quoted to generate the expression J e K :: Q Exp.
Conversely, an expression c ::Q Exp can be spliced to extract the expression $(c)
that c represents. Template Haskell also has support for quoting declarations
J d KD ::Q Dec , patterns J p KP ::Q Pat, types J t KT ::Q Type, term-level names
′n :: Name and type-level names ′′N :: Name.

Intensional code analysis and construction is also supported: after quotation,
the user can inspect and manipulate the syntax tree directly, for instance, the
Exp type is a normal algebraic datatype that represents Haskell expressions.

A top-level splice is a splice ($(·)) not surrounded by any quotations. This
marks a location in a program where a metaprogram will be evaluated and the
resulting program inserted. For example, the declaration x = $(c) contains a
top-level (expression) splice, since it has no enclosing quotes, whereas J $(c) K
does not contain a top-level splice.2

2.2 Levels

In order for a program generator to be executed at compile time, it must depend
only on other information available at compile time. A well-staged program is one
where the compile-time portions of the program can be fully evaluated before
the runtime portions.

Every declaration and every (sub-)expression in a program is assigned an
integer level. These levels are checked by the type-checker in order to ensure
that the program is well-staged. The top-level declarations in a module are at
level 0. Similarly, any normally-imported bindings are at level 0. The level is
increased by 1 when inside a quote and decreased by 1 inside a splice. In short:

– $(e) is at level n iff e is at level n − 1
– J e K is at level n iff e is at level n + 1

Therefore the level of an expression can be calculated as the number of quotes
surrounding the expression minus the number of splices.

For example, in the call to $(makeLenses ′′T) from our introductory example,
the expression at a whole is at level 0, so makeLenses ′′T is at level −1, so T is
at level 0 again. (While a name quote ′′T uses a different syntax to quotation
brackets J · K, it is still a quote form, so it increases the level.)

2.3 Stages

A stage is a moment in time for which a module is compiled. We will write M@S
to indicate that module M is compiled for stage S .

In this paper we will typically talk about two-stage evaluation where there
are distinct compile-time and runtime stages (C and R, respectively). Compile-
time and runtime are distinct stages as programs being executed at compile time

2 This use of “top-level splice” is standard terminology [11,18], even though it does
not mean the splice is necessarily a “top-level declaration” within the module.

Explicit Level Imports 5

may need to be compiled in a different way from those being executed at runtime
(e.g. using dynamically-linked object files for compile time, but statically-linked
object files for runtime).

For example, when compiling the program in the introduction, the main mod-
ule Main@R should create two dependencies: Control .Lens.TH@C and App@R.
When type-checking without producing runtime code (e.g. under -fno-code,
or in a language server), Control .Lens.TH must be compiled for execution at
compile time, but it is enough to typecheck App without generating code for it.

In a cross-compilation setting, the need for the stage distinction is even
clearer, because the runtime stage needs programs that run on the target ar-
chitecture, whereas the compile-time stage expects programs to run on the host.
Cross-compilers may benefit from three or more stages (see section 5.7).

Levels and stages are often confused in literature but for clarity it is important
to distinguish between them [16]. Both may be represented as numbers, but levels
are offsets (differences relative to common reference point), whereas stages are
absolute values. Levels are a type-system concept as part of the specification of
valid programs, whereas stages are an implementation detail of the compiler.

The particular stage structure is not the primary focus of this work, but
the implementation is constrained by the assumptions made in the design of
the level system about which modules will be available at each stage. More
permissive rules lead to more programs being accepted but more requirements
placed on making modules available at more stages. Less permissive rules make
it harder to write level-correct programs but place fewer requirements on which
modules are required.

2.4 Cross-Stage Persistence

If an identifier is used at a level different from the level at which it is bound,
the program is level-incorrect, but Template Haskell provides two implicit mecha-
nisms that are used to attempt to fix its level via cross-stage persistence (CSP) [15]:

Path-based persistence: allows global definitions at level m to be made avail-
able at a different level n in two cases:

– If n>m, intuitively because all global definitions will still exist in the defining
module even if references to them are spliced at a future stage. For example,
this allows a module to define a top-level identifier and refer to it in a quote
in the same module.

– If n<m and the definition was imported rather than being defined in the cur-
rent module, intuitively because the dependency order on modules ensures
the definition must have been compiled already. For example, this allows an
imported identifier to be used in a splice.

It is not possible for a global definition to be used in its defining module at a
level earlier than its definition, because that would require parts of the module
to be compiled to executable code before other parts were type-checked.

6 M. Pickering et al.

Serialisation-based persistence (Lift): locally-bound variables can’t be per-
sisted using path-based persistence, but when the variable’s type is serialisable,
its value can be serialised to persist it to future stages. This serialisation is de-
fined as the lift method of the Lift type class. For instance, the following program
is level-incorrect as x is bound at level 0 but used at level 1. However, it is fixed
by serialisation-based persistence, which transforms the program into one where
x is used at level 0 by the compiler automatically inserting a call to lift:

tardy x = J x K =⇒ tardy x = J $(lift x) K

All base types such as Int, Bool , Float, etc, instantiate Lift, and user types can
instantiate it automatically with the DeriveLift extension (which will generate
code that relies on path-based persistence).

It is not possible for a locally-bound variable to be used earlier than the stage
at which it is bound, e.g. J λx → $(x) K is irredeemably stage-incorrect.

Example: The following program requires both implicit mechanisms in order
to be accepted. Path-based persistence explains why the occurrence of suc in
examples one and anotherOne is accepted (since it is defined at level 0 but used
at level 1), and why anotherOne can be used in a top-level splice (since it is
imported at level 0 but used at level −1):

module M2 where
suc :: Int → Int
suc = (+1)

one :: Q Exp
one = J λx → suc x K
anotherOne :: Int → Q Exp
anotherOne y = J suc y K

module M3 where
import M2 (anotherOne)

two = $(anotherOne 1)

Serialisation-based persistence explains why the y in anotherOne can be moved
from a value that exists at level 0 to one that exists at level 1. The compiler will
implicitly introduce a call to lift:

anotherOne y = J suc y K =⇒ anotherOne y = J suc $(lift y) K

And lift will take care of converting the compile-time y into a runtime value.

2.5 Implications of cross-stage persistence for stages

When compiling, the build system receives demands for the compilation of mod-
ules at particular stages. Then by reading the module header, further demands
are placed upon the imported modules. It is a key design constraint that the en-
tire build plan for a multi-module program can be determined solely by reading
the module headers (e.g. import statements), without needing to perform a full
name resolution or type-checking pass.

Explicit Level Imports 7

Serialisation-based persistence elaborates a level-incorrect program into a
level-correct one that the user themselves could have written. Therefore it does
not impose any requirements or use any assumptions about the stages for which
modules are compiled.

However, modules using path-based cross-stage persistence place strong re-
quirements on the set of dependencies that must be demanded. Consider two
modules B and C that use cross-stage persistence:

module A where {a = 1 :: Int }
module B where
import A
foo = a
bar = J foo K

module C where
import B
c :: Int
c = $(bar)

Cross-stage persistence means that any identifier in scope may be used in a
top-level splice or a quotation. When compiling C@R, bar from B is used only in
a top-level splice, but this can’t be determined from the module header. Instead,
since C imports B, the build system must presume that both B@R and B@C
are needed. Similarly, if compilation of B@C is required, then it is also necessary
to compile B@R because the foo identifier appears in a quote and is persisted
from level 0 to level 1 (so the resulting program may splice foo and hence it may
appear at runtime).

Ultimately, cross-stage persistence forces the build system to compile all mod-
ules and require all dependencies for all stages, even if the final program uses
only a small fragment of its dependency tree at any particular stage.

3 Implicit stage-persistence considered harmful

Implicit stage persistence seems convenient at first, but is the root of many
performance and cross-compilation issues in practice. If imported identifiers can
be arbitrarily used at any stage, the compiler must pessimistically assume they
will be used at all stages, and therefore it needs to compile all modules in a
project for both runtime and compile-time.

Our design allows implicit path-based cross-stage persistence to be disabled.
Identifiers must be used at precisely the level they are bound, and no other levels.
Instead, we should be able to explicitly control the level at which identifiers from
a module are imported. By being very precise about which levels modules are
needed at, there are many real-world advantages:

1. Currently, if a module enables TemplateHaskell, then all imported modules
are compiled to object code before name resolution takes place. This ensures
that any top level splices that may be encountered are able to be fully evalu-
ated. This is a pessimisation because most of the imported identifiers, which
we have taken such pains to ensure we can run, will not actually be used in
a top-level splice. Proposals to increase build parallelism (such as #14095)
are far less effective in projects that use TemplateHaskell, because name

https://gitlab.haskell.org/ghc/ghc/-/issues/14095

8 M. Pickering et al.

resolution depends on code generation for all dependencies. By distinguish-
ing the small fraction of imported modules whose code is executed only at
compile time, we are able to improve this pessimisation.

2. GHC offers an -fno-code flag that instructs the compiler to parse and type-
check Haskell modules, but not to generate code, so as to offer quicker
feedback to the user. However, any modules imported by a module using
TemplateHaskell must be compiled to object code, despite the fact that
we will not generate object code for the module itself. By distinguishing
imported modules whose code is executed only at compile time, we can
eliminate or significantly reduce this unnecessary work.

3. IDEs such as Haskell Language Server face similar problems: they are in-
terested only in the result of type-checking, but when TemplateHaskell is
enabled, many modules have to be unnecessarily compiled to bytecode.

4. Currently, when cross-compiling modules that use TemplateHaskell, all splices
are executed on the target even though compilation takes place on a sep-
arate host. This is a source of significant complexity. This work is a step
towards properly distinguishing dependencies that need to be compiled for
and executed on the host from those compiled for the target.

4 Specification

The purpose of this work is to design a different level system which allows finer
grained control of which imported identifiers are available at which level, and
hence, which modules will be required at specific stages. In order to do this, we
introduce two new language extensions: NoImplicitStagePersistence disables
path-based cross-stage persistence and forces the programmer to ensure their
programs are level-correct explicitly (getting performance benefits as a result);
ExplicitLevelImports allows for explicit level control via imports.

4.1 ImplicitStagePersistence

When the language extension ImplicitStagePersistence is disabled for a mod-
ule (e.g. using -XNoImplicitStagePersistence), path-based cross-stage persis-
tence will be disallowed by the compiler. That is, use of a binding at a level other
than the level at which it was defined or imported will result in a type error.
In particular, bindings imported using traditional import statements or defined
at the top-level may not be used inside of top-level splices, nor within quotes.
For example, the following is accepted with ImplicitStagePersistence, but
rejected under NoImplicitStagePersistence:

import B (foo) -- foo :: Q Exp
data C = MkC

quoteC = J MkC K -- Error: MkC defined at level 0 but used at level 1
spliceC = $(foo) -- Error: foo imported at level 0 but used at level −1

Explicit Level Imports 9

ImplicitStagePersistence is enabled by default in all existing language
editions in order to preserve backwards compatibility. In modules which enable
NoImplicitStagePersistence it is an error to use DeriveLift on a type unless
all its definition is imported at both level 0 and level 1. This is discussed in more
detail in Section 6.2.

When a module uses TemplateHaskell with NoImplicitStagePersistence,
the module dependencies no longer need to be pessimistically compiled and
loaded at compile time. Instead, the modules that are needed at compile-time
versus runtime are determined by the explicit splice and quote imports relative
to the module being compiled, which are enabled by ExplicitLevelImports.

4.2 ExplicitLevelImports

The ExplicitLevelImports extension introduces two new import modifiers to
the import syntax, splice and quote, which control the level at which identifiers
from the module are brought into scope:

– A splice import of A imports all bindings of A to be used only at level −1.
– A quote import of B imports all bindings of B to be used only at level 1.

For example, the following is accepted with ExplicitLevelImports:

import quote Foo (bar) -- bar is introduced at level 1
import Foo (baz) -- baz is introduced at level 0
import splice Foo (qux) -- qux is introduced at level −1
foo = baz J bar K $(qux)

ExplicitLevelImports implies NoImplicitStagePersistence, to ensure
users importing modules just at the correct levels benefit from the compiler
performance benefits by default. Nonetheless, it is permitted to enable together
ExplicitLevelImports and ImplicitStagePersistence. This allows splice
and quote imports to be used, but ImplicitStagePersistence still allows
cross-stage persistence (and thus the compiler must still assume all modules are
needed at all stages). This combination is supported to allow gradual migration
of code bases following the change, and for corner cases such as programmatic
code generation, where the programmer may wish to use the syntax of splice
and quote imports without obliging the whole module to be level-correct.

4.3 Names and Exports

Name resolution (“renaming”) does not take account of the level at which an
identifier was imported when disambiguating ambiguous names, even though
this is sometimes more conservative than necessary. For example, the following
program is rejected:

import A (x)
import splice B (x)
foo = $(x) x

10 M. Pickering et al.

In this case, there is, in principle, no ambiguity because A.x isn’t allowed to be
used in the top-level splice, and B.x isn’t allowed to be used outside the splice.
However, we choose to reject this disambiguation to keep the design simple
and prevent any confusion about what is in scope. This position is conserva-
tive, and can be relaxed in the future if more flexibility appears worthwhile.
This choice follows GHC’s Lexical Scoping Principle, which requires that it is
possible to determine the binding site of an identifier without type-checking. A
positive consequence of this design choice is that if a program is accepted with
ExplicitLevelImports, it will be accepted after erasing all splice/quote key-
words and using ImplicitStagePersistence instead of ExplicitLevelImports.

Exports: Under NoImplicitStagePersistence, modules can only export bind-
ings available at level 0. For example, the following program is rejected because
bad is imported at level −1 but used at level 0:

module M (bad) where
import splice N (bad)

4.4 Type-class instance resolution

Type-class instances are available at the levels they were imported, much like
identifiers, can only be used at those levels under NoImplicitStagePersistence.
In detail:

– Instance resolution views the set of instances from all imports together and
thus instances from normal and leveled imports must agree with each other.

– After instance resolution has selected an instance, it is checked which lev-
els the instance is available at and an error is raised if the instance is not
available at the correct level.

– Instances defined in the current modules are at level 0, just like top-level
variable definitions in a module.

This design for instances mirrors the situation for name resolution. As with
ambiguous names, it would in principle be possible for the type-checker to make
use of level information to accept more programs, but this seems like an unde-
sirable level of complexity. Consider the following example modules:

module X where
data X = MkX

module Normal where
import X
instance Show X where
show = "normal"

module Splice where
import X
instance Show X where
show = "splice"

The following program, in principle, could be accepted since the overlapping
instances for Show X in the show call are available at different levels, however,
we choose to reject the program (just like we do for ambiguous names):

https://github.com/ghc-proposals/ghc-proposals/blob/8ad4daecc849f435af49767864b8e61b174bf252/principles.rst#221lexical-scoping-principle-lsp

Explicit Level Imports 11

import X (X (. .))
import splice X (X (. .))
import Normal () -- imports instance at level 0
import splice Splice () -- different instance at level −1
s1 = show MkX

On the other hand, the following program imports the same Show X instance
at both level 0 and level -1, allowing it to be used at both levels. It is accepted:

module X where
data X = MkX deriving Show

module Bottom where
import X (X (. .)) -- imports instance at level 0
import splice X (X (. .)) -- imports the same instance at level −1
import splice Language.Haskell .TH.Lib (stringE)
s1 = show MkX -- Uses instance at level 0
s2 = $(stringE (show MkX)) -- Uses instance at level −1

Exports of class instances: Only instances available at level 0 are re-exported
from a module, just like for identifiers. For example, the following is rejected in
the call to show since no instance for Show X is in scope:

module X where
data X = MkX

module Splice where
import X
instance Show X where
show = "splice"

module Y where
import splice Splice ()

module Bottom where
import X (X (. .))
import Y ()

s1 = show MkX

Even though Y has access to the instance at level −1, it does not re-export
it. Thus Bottom does not import the instance. This is necessary for a clean
separation between stages, because instances may exist only at compile-time or
only at runtime, just like identifiers.

5 Examples

5.1 Splice imports

A “splice” import is prefixed with splice. In this example, identifiers from A can
be used only in top-level splices and identifiers from B cannot be used in quotes
or splices:

import splice A (foo) -- foo :: Int → Q Exp
import B (bar) -- bar :: Int → Q Exp

12 M. Pickering et al.

x = $(foo 25) -- Accepted
y = $(bar 33) -- Error: bar imported at level 0 but used at level −1

Thus:

1. When compiling module Main only identifiers from module A will be used
in top-level splices. Therefore, only A (and its dependencies) need to be
compiled to object code before starting to compile Main.

2. When cross-compiling, in principle A needs to be built only for the host and
B only for the target.

If the same module is needed to be used at different levels then two import
declarations can be used:

import C
import splice C

5.2 Quote imports

A quote import is prefixed with quote. In this example, identifiers from A can
be used only in quotes, while identifiers from A cannot be used at the top-level
or in splices:

import quote A (foo) -- foo :: Int → Int
import B (bar) -- bar :: Int → Int

x = J foo 25 K -- Accepted
y = J bar 33 K -- Error: bar imported at level 0 but used at level 1

When a quote such as x = J foo 25 K is spliced, i.e. z = $(x), its contents
will be needed to execute the program at runtime (z = foo 25, so evaluating z
at runtime requires foo to be available).

5.3 Top-level definitions

A binding introduced at the top-level has level 0. Therefore, as a consequence
of NoImplicitStagePersistence, it can not be used either in a quotation (at
level 1) nor in a top-level splice (at level -1).

plusFive x = 5 + x

tenQ = J plusFive 5 K -- Error: plusFive is defined at 0 but used at 1

A constant which is defined at the top-level can be persisted to future stages
by use of serialisation-based persistence. For example, the constant five can be
used in a quote since it is implicitly persisted using lift.

five = 5

doubleFive = J five ∗ 2 K =⇒ J $(lift five) ∗ 2 K

In section 7.1, we reflect briefly on how the design could be extended in order
to lift this restriction.

Explicit Level Imports 13

5.4 Module stages

In section 2.3 we said that modules were compiled for either the C or R stages.
Levelled imports make it possible to be precise about what stages we need de-
pendencies.

– The main module is compiled for R. This is where the main function lives
and the entry-point to running the resulting executable.

– A normal import does not shift the stage at which the dependent module is
required.

– If a module M splice imports module A, then compiling M@R requires com-
piling module A@C .

– If a module M splice imports module A, then compiling M@C requires com-
piling module A@C .

– If a module N quote imports module B, then compiling N@C requires com-
piling module B at N@R.

– If a module N quote imports module B, then compiling N@R requires com-
piling module B at N@R

Stage arithmetic is saturating. Thus, when there are two stages, a quote
import corresponds to requiring the module at R, and a splice import to requiring
a module at C . When there are more than two stages then the imports can have
different meanings depending on the stage a module is compiled for. The compiler
can then choose appropriately how modules needed at C are compiled and how
modules needed at R are compiled. For example:

– In -fno-code mode, C modules may be compiled in dynamic way, but R
modules are not compiled at all.

– When using a profiled GHC. C modules must be compiled in profiled way
but R modules will be compiled in static way.

Cross-compilation settings may benefit from introducing more stages, as dis-
cussed in section 5.7.

5.5 Module stage offsetting

The interaction between stages and level offsetting can be understood more
clearly through an example. Module A splices foo from module B which both
quotes bar from module C and uses baz from D:

module A where
import splice B (foo)
x = $(foo 10)

module C where
bar = 42

module D where
baz 0 = True
baz = False

module B where
import D (baz)
import quote C (bar)
foo x

| baz x = J bar ∗ 2 K
| otherwise = J bar K

14 M. Pickering et al.

In A, foo can be used within a splice (level −1) because of the splice import (−1).
In B, bar can be used within a quote (level +1) because of the quote import
(+1) Now, consider compiling A@R.

– B is required at stage C , as it is splice imported from A@R.
– C is required at stage R, as it is quote imported from B@C .
– D is required at stage C , as it is normally imported from B@C .

Therefore in order to compile A@R, we have performed dependency resolution
and require B@C , C@R and D@C .

The perhaps curious case is D: is it needed at compile-time or runtime? It
does not use a splice import, so one could think it is needed at runtime – but
here is where the distinction between the import level offset and base stage is
relevant. D is only being imported as a dependency of B, which is at C stage.
This makes D also at the C stage! Note how baz is needed at compile time just
to define foo, which is properly splice imported.

The levels of all modules in the transitive closure of a splice-imported module
are offset by −1. Conversely, quote imports offset the levels by +1, thereby
making all the levels align correctly.

5.6 ImplicitStagePersistence, stages and TemplateHaskellQuotes

The TemplateHaskellQuotes extension is a refinement of the TemplateHaskell
extension in which you may only write non-negative contexts (i.e. quotations). A
more refined specification is possible if you observe that TemplateHaskellQuotes
only persists identifiers forwards. If a module enables TemplateHaskellQuotes
and ImplicitStagePersistence then the module and immediate dependencies
are required at current and future stages but not previous stages.

Consider this example, where M1 has enabled both TemplateHaskellQuotes

and ImplicitStagePersistence:

module M1 where

data T = MkT Int

instance Lift T where
lift (MkT n) = J MkT $(lift n) K

module M2 where

import M1

foo = MkT

Under the revised rule, if we require M2@R:

– We require M1@R due to the import M1 declaration.
– M1@R enables ImplicitStagePersistence and TemplateHaskellQuotes

so therefore places a requirement on compiling M2@R.

If TemplateHaskell was enabled, we would also require M2@C because
TemplateHaskell allows you to write a -1 context, and hence persist identi-
fiers to negative as well as positive levels.

Explicit Level Imports 15

5.7 Cross-compilation

Cross-compilation conceptually involves at least three stages:

– a compile-compile-time stage for programs that run on the host at compile-
time and generate programs for the host,

– the normal compile-time stage that executes on the host and generates pro-
grams for the target,

– the normal runtime stage that executes on the target.

(One can imagine more exotic cross-compilation systems where more than three
stages are used, although this is likely to be rare in practice.)

GHC’s current implementation strategy for cross-compilation is to compile
all splices for the target and execute them there. This requires having a target
environment (or equivalent virtual machine) around at compile time, which is
complex and limits contexts in which Template Haskell can be cross-compiled.
Instead, ideally the compiler would execute splices on the host, but this requires
significant implementation work.

A key reason for distinguishing stages and levels is that stages are an im-
plementation detail, about which the level system is agnostic. Thus it should
be possible for (cross-)compiler implementors to change the number of stages
without modifying the level system, but benefiting from the fact that the level
system ensures the program is well-staged. While our work does not directly
make changes to GHC’s support for cross-compilation, it lays the foundations
for future work to change the implementation strategy.

6 Discussion

6.1 Case study: pandoc

The pandoc library is a medium-sized package that contains approximately 200
modules. It uses TemplateHaskell in a light manner in order to embed some
data files and derive some JSON instances.

Modifying the package to use ExplicitLevelImports required little effort
and involved modifying the imports of the 5 modules in the project which use
TemplateHaskell.

Previously, type-checking the library component (by loading it into GHCi us-
ing the -fno-code option) would needlessly compile the majority of modules to
bytecode, as one module near the root of the module graph used TemplateHaskell.
Following our changes, bytecode generation is no longer necessary and the time
is reduced from 17.4 seconds to 9.5 seconds.

From looking at the imports of modules, it can be observed that no modules
from the pandoc library are used in compile-time evaluation and only a few
external packages are needed at compile-time. This is a very common situation
in practice, and one where the extensions are at their most effective.

https://hackage.haskell.org/package/pandoc
https://github.com/mpickering/pandoc/commit/ce57269b2c6ec894a2389069362ea39b06b5c413

16 M. Pickering et al.

6.2 Implicit lifting and deriving Lift instances

Lift instances are used to provide serialisation-based cross-stage persistence. For
example, a typical Lift instance looks like:

data MInt = Some Int | None
instance Lift MInt where

lift ::MInt → Q Exp
lift None = J None K
lift (Some x) = J Some $(lift x) K

The presence of this instance means the following declaration will be accepted:

foo ::MInt → Q Exp
foo x = J x K =⇒ foo x = J $(lift x) K

Defining a Lift instance requires the datatype constructors to be available
both at compile-time and runtime, so defining Lift within the same module
as the datatype itself requires path-based cross-stage persistence. Operationally,
None and Some are needed both at compile-time and runtime since they are both
matched on at compile time, and also persisted to be spliced in the future into a
program that can make use of them at runtime. As a result, it isn’t possible to de-
fine or derive a (non-orphan) Lift instance under NoImplicitStagePersistence.

An orphan Lift instance can be defined thus:

module N where
import M
import quote M

instance Lift MInt where
lift ::MInt → Q Exp
lift None = J None K
lift (Some x) = J Some $(lift x) K

module M where
data MInt

= Some Int
| None

This isn’t technically problematic, rather it is just a result of what Lift means.
However, it means some users may need to modify their use of Lift instances if
they wish to benefit more from NoImplicitStagePersistence. Users are free
to use ImplicitStagePersistence in selected modules to allow defining Lift
instances, but doing so means all the dependencies of the module will need to
be available both at compile-time and runtime.

As a general rule, Lift instances should be defined only for simple datatypes
near the root of the module hierarchy of an application.

Just as NoImplicitStagePersistence allows users to disable implicit path-
based cross-stage persistence, it would make sense to have an extension flag
to disable implicit lifting (serialisation-based persistence). This would allow the
programmer to ensure they are explicit about where calls to lift occur in their
programs, which is sometimes desirable when using staging for runtime perfor-
mance.

Explicit Level Imports 17

A possible alternative design choice, taken by MacoCaml [1,19,20], would be
to have datatype definitions available at every stage. This would allow Lift in-
stances to continue to be accepted, and more generally allow data constructors
to be implicitly persisted between levels. However, it would require the compiler
and build system to support dependencies on the datatypes of a module indepen-
dently from the rest of the module, which adds significant complexity, especially
since some modules may be otherwise completely unneeded at a particular stage.

6.3 Future work: Level-correct package dependencies

The splice and quote imports in this work make it possible to express which
module dependencies are required at which stages, within the Haskell language.

However, large Haskell programs are typically organised into multiple pack-
ages, using the Cabal package system to describe their dependencies. While our
proposed feature delivers significant benefits to the compilation process for a
single package, it would ultimately make sense to expose level distinctions in
Cabal package dependencies, so that Cabal could build package dependencies
only for the stages at which they are required. This would primarily be of value
in cross-compilation scenarios.

In the interests of keeping the work manageable, changes to Cabal are out of
scope of the current paper, but we believe it lays a foundation for future work
to improve Cabal’s cross-compilation support.

6.4 Future work: Typed Template Haskell

Typed Template Haskell (TTH) [18] is an extension of Template Haskell that
allows using type-safe staged programming for program optimisation. Its typical
use cases are rather different from untyped TH, since in particular it does not
support declaration splices.

The same level checks can be used for typed quotes and splices as for the
untyped case. However, when using TTH and explicit level imports, the pro-
grammer can introduce level errors that cannot currently be worked around. For
example, the following program contains a stage error as the evidence for Show a
is bound earlier than it is used, but it is currently mistakenly accepted by GHC:

foo :: Show a ⇒ Code Q (a → String)
foo = J show K

The language of constraints is not yet expressive enough to communicate that the
Show a evidence needs to be available at a later stage. Fixing this problem will
require significant additional effort to resolve other known issues with TTH [9].

6.5 Level inference

Our design requires programmers to be explicit about the levels at which identi-
fiers are imported. One might instead ask whether the splice and quote markers

18 M. Pickering et al.

on imports could be inferred, thereby relieving the programmer of this obliga-
tion, without the costs of fully implicit stage persistence.

In principle, the compiler could begin compiling a module before any of its
dependencies were available, then when a dependency was required, it could
suspend compilation of the module, request the dependency at the appropriate
stage, then later resume compilation when the dependency was available. How-
ever, this would be complex to implement and a radical departure from GHC’s
compilation model, which as discussed in section 2.5 requires that the build plan
can be constructed merely by reading module headers.

6.6 Imports with explicit level numbers

Using the system described here, it is possible to import identifiers only at levels
−1, 0 or 1. This means it is not possible to directly import an identifier for use
in a splice contained within another splice, e.g. $(foo $(bar)), which requires bar
to be available at level −2.3 It is possible to work around this, e.g. by splice-
importing baz from a separate module that defines baz = foo $(bar), and which
can itself splice-import bar .

An alternative design would be to allow even finer grained control of splice
imports so that usage at level −2 or lower could be distinguished, for example by
writing import splice 2 SomeModule (bar). The only real obstacle to adding this
to our design is deciding upon a suitable syntax. However, adding this feature
would increase the complexity of the extension, and in practice multiple levels
of splices are very rare, so we consider the workaround adequate.

7 Related Work

The idea to use import modifiers to accept the level of identifiers originates
from Racket [2]. The option of using explicit phasing was then introduced into
the R6RS report [13], although many implementations ignore explicit phasing
annotations. The community attitute shifted towards implicit phasing [4] and the
R7RS report did not require implementations support explicit phases [12]. Our
system allows a user to opt into either the implicit or explicit phasing approach
on a per-module basis.

We are also inspired by MacoCaml [1,19,20] which suggests an import mod-
ifier similar to splice. Our work brings those ideas to Haskell, and tackles the
challenges faced when integrated leveled imports into Haskell, building on lan-
guage design discussions in the GHC proposals process.4

7.1 Multiple levels within a single module

The design in this paper requires each module to exist at a single level, which
may sometimes necessitate users introducing more modules than would be ideal.

3 Nested quotes are in any case not supported in GHC due to a separate restriction.
4 See GHC proposals #243: Stage Hygiene for Template Haskell and #412: Explicit
Splice Imports.

https://github.com/ghc-proposals/ghc-proposals/pull/243
https://github.com/ghc-proposals/ghc-proposals/pull/412
https://github.com/ghc-proposals/ghc-proposals/pull/412

Explicit Level Imports 19

One possible design that mitigates the need for module-level granularity of
imports, inspired by the Racket [2], MacoCaml [1,19,20] and MetaFM [14] lan-
guages, is the introduction of an additional macro keyword that introduces bind-
ings at a different level. Amacro annotated binding would introduce a binding at
the −1 level, without requiring it to be splice imported from a different module.

Our design lays out the foundation for well-leveled programs, and is forward-
compatible with such a macro keyword, or other possible features that relax
Haskell’s identification of compilation units with source files, such as the pro-
posed Local Modules feature. 5

Another angle is to allow users to define their own level contexts, an idea
proposed for Racket [3]. In the future it would also be interesting to explore
extending this system to different stages. This could be useful in order to support
embedding other modal languages into Haskell.

7.2 Module generation

Functors in ML family languages allow users to parameterise modules. It’s
therefore a natural consideration to remove the abstraction overhead by using
ideas from staging [6,17,10]. Modules are neither first-class nor parameterised in
Haskell but Explicit Level Imports could be considered a simple form of module
generation: by making a demand on a module at a particular stage, the compiler
will generate it for that stage. The choice is either to wholly include a module
or not include it at all.

In ML family languages, modules and module functors are a primary means of
abstraction. In Haskell, a similar role is instead played by type classes. Therefore
the ideas in these papers are more suitably considered to apply to modifications
to type class mechanisms than modules themselves. For example, you can see
parallels in techniques used in CFTT [7] or Staged SOP [8].

Package-level abstraction is implemented for GHC in the Backpack [21] ex-
tension, which currently sees little practical use. Similar ideas might also be
useful in reviving interest in this area.

8 Conclusion

We have presented the design of Explicit Level Imports, a simple system that
allows programmers to be precise about module dependencies when using Tem-
plate Haskell. By using explicit dependencies, the modules required for each stage
are evident to the compiler. This leads to important practical benefits gained
by separating runtime from compile-time dependencies. The system described
has been implemented and verified to achieve significant practical improvements
to projects using Template Haskell. In the next stage of the project we aim to
finish the implementation and contribute the feature upstream to GHC.

5 See GHC proposal #283: Local Modules

https://github.com/ghc-proposals/ghc-proposals/pull/283

20 M. Pickering et al.

9 Acknowledgments

We thank the participants in the GHC proposal process, in particular John Eric-
son, Sebastian Graf, Simon Peyton Jones and Arnaud Spiwack, for their helpful
comments on the GHC proposal that preceded this paper. The participants of
TFP, including Daphne Preston-Kendal, provided some useful additional refer-
ences and conversations. Thanks also to Mercury for funding this work.

Explicit Level Imports 21

References

1. Chiang, T.J., Yallop, J., White, L., Xie, N.: Staged compilation with module
functors. Proc. ACM Program. Lang. 8(ICFP) (Aug 2024). https://doi.org/

10.1145/3674649, https://doi.org/10.1145/3674649
2. Flatt, M.: Composable and compilable macros: you want it when? ACM SIGPLAN

Notices 37(9), 72–83 (2002)
3. Flatt, M.: Submodules in Racket: you want it when, again? In: Proceedings of

the 12th International Conference on Generative Programming: Concepts &
Experiences. p. 13–22. GPCE ’13, Association for Computing Machinery, New
York, NY, USA (2013). https://doi.org/10.1145/2517208.2517211, https://
doi.org/10.1145/2517208.2517211

4. Ghuloum, A., Dybvig, R.K.: Implicit phasing for R6RS libraries. In: Hinze, R.,
Ramsey, N. (eds.) Proceedings of the 12th ACM SIGPLAN International Con-
ference on Functional Programming, ICFP 2007, Freiburg, Germany, October 1-
3, 2007. pp. 303–314. ACM (2007). https://doi.org/10.1145/1291151.1291197,
https://doi.org/10.1145/1291151.1291197

5. Hudak, P., Peyton Jones, S., Wadler, P., Boutel, B., Fairbairn, J., Fasel, J.,
Guzmán, M.M., Hammond, K., Hughes, J., Johnsson, T., et al.: Report on the
programming language Haskell: a non-strict, purely functional language version
1.2. ACM SigPlan notices 27(5), 1–164 (1992)

6. Inoue, J., Kiselyov, O., Kameyama, Y.: Staging beyond terms: Prospects and chal-
lenges. In: Proceedings of the 2016 ACM SIGPLAN Workshop on Partial Evalua-
tion and Program Manipulation. pp. 103–108 (2016)

7. Kovács, A.: Closure-free functional programming in a two-level type theory. Pro-
ceedings of the ACM on Programming Languages 8(ICFP), 659–692 (2024)

8. Pickering, M., Löh, A., Wu, N.: Staged sums of products. In: Proceedings of the
13th ACM SIGPLAN International Symposium on Haskell. pp. 122–135 (2020)

9. Pickering, M.T.: Understanding the Interaction Between Elaboration and Quota-
tion. Ph.D. thesis, University of Bristol (2021)

10. Sato, Y., Kameyama, Y., Watanabe, T.: Module generation without regret. In:
Proceedings of the 2020 ACM SIGPLAN Workshop on Partial Evaluation and
Program Manipulation. p. 1–13. PEPM 2020, Association for Computing Machin-
ery, New York, NY, USA (2020). https://doi.org/10.1145/3372884.3373160,
https://doi.org/10.1145/3372884.3373160

11. Sheard, T., Peyton Jones, S.: Template meta-programming for Haskell. In: Pro-
ceedings of the 2002 ACM SIGPLAN Workshop on Haskell. pp. 1–16. Haskell ’02,
ACM, New York, NY, USA (2002). https://doi.org/10.1145/581690.581691,
http://doi.acm.org/10.1145/581690.581691

12. Shinn, A., Cowan, J., Gleckler, A.: Revised [7] report on the algorithmic language
scheme (2013)

13. Sperber, M., Dybvig, R.K., Flatt, M., van Straaten, A., Findler, R., Matthews, J.:
Revised [6] Report on the Algorithmic Language Scheme. Cambridge University
Press, USA, 1st edn. (2010)

14. Suwa, T., Igarashi, A.: An ML-style module system for cross-stage type ab-
straction in multi-stage programming. In: Functional and Logic Program-
ming: 17th International Symposium, FLOPS 2024, Kumamoto, Japan, May
15–17, 2024, Proceedings. p. 237–272. Springer-Verlag, Berlin, Heidelberg (2024).
https://doi.org/10.1007/978-981-97-2300-3_13, https://doi.org/10.1007/
978-981-97-2300-3_13

https://doi.org/10.1145/3674649
https://doi.org/10.1145/3674649
https://doi.org/10.1145/3674649
https://doi.org/10.1145/3674649
https://doi.org/10.1145/3674649
https://doi.org/10.1145/2517208.2517211
https://doi.org/10.1145/2517208.2517211
https://doi.org/10.1145/2517208.2517211
https://doi.org/10.1145/2517208.2517211
https://doi.org/10.1145/1291151.1291197
https://doi.org/10.1145/1291151.1291197
https://doi.org/10.1145/1291151.1291197
https://doi.org/10.1145/3372884.3373160
https://doi.org/10.1145/3372884.3373160
https://doi.org/10.1145/3372884.3373160
https://doi.org/10.1145/581690.581691
https://doi.org/10.1145/581690.581691
http://doi.acm.org/10.1145/581690.581691
https://doi.org/10.1007/978-981-97-2300-3_13
https://doi.org/10.1007/978-981-97-2300-3_13
https://doi.org/10.1007/978-981-97-2300-3_13
https://doi.org/10.1007/978-981-97-2300-3_13

22 M. Pickering et al.

15. Taha, W., Sheard, T.: Multi-stage programming with explicit annotations. In:
Proceedings of the 1997 ACM SIGPLAN Symposium on Partial Evaluation and
Semantics-based ProgramManipulation. pp. 203–217. PEPM ’97, ACM, New York,
NY, USA (1997). https://doi.org/10.1145/258993.259019, http://doi.acm.

org/10.1145/258993.259019

16. Taha, W., Sheard, T.: MetaML and multi-stage programming with explicit annota-
tions. Theor. Comput. Sci. 248(1-2), 211–242 (2000). https://doi.org/10.1016/
S0304-3975(00)00053-0, https://doi.org/10.1016/S0304-3975(00)00053-0

17. Watanabe, T., Kameyama, Y.: Program generation for ML modules (short pa-
per). In: Proceedings of the ACM SIGPLAN Workshop on Partial Evaluation and
Program Manipulation. pp. 60–66 (2017)

18. Xie, N., Pickering, M., Löh, A., Wu, N., Yallop, J., Wang, M.: Staging with class:
a specification for Typed Template Haskell. Proceedings of the ACM on Program-
ming Languages 6(POPL), 1–30 (2022)

19. Xie, N., White, L., Nicole, O., Yallop, J.: MacoCaml: staging composable and
compilable macros. Proceedings of the ACM on Programming Languages 7(ICFP),
604–648 (2023)

20. Yallop, J., White, L.: Modular macros. In: OCaml Users and Developers Workshop.
vol. 6 (2015)

21. Yang, E.Z.: Backpack: Towards practical mix-in linking in Haskell. Ph.D. thesis,
Stanford University (2017)

https://doi.org/10.1145/258993.259019
https://doi.org/10.1145/258993.259019
http://doi.acm.org/10.1145/258993.259019
http://doi.acm.org/10.1145/258993.259019
https://doi.org/10.1016/S0304-3975(00)00053-0
https://doi.org/10.1016/S0304-3975(00)00053-0
https://doi.org/10.1016/S0304-3975(00)00053-0
https://doi.org/10.1016/S0304-3975(00)00053-0
https://doi.org/10.1016/S0304-3975(00)00053-0

	Explicit Level Imports

