Type inference in context

Conor McBride
Adam Gundry University of Strathclyde
University of Strathclyde
Microsoft Research PhD Scholar JameS MCKinna
Radboud University Nijmegen
MSFP

25 September 2010

http://personal.cis.strath.ac.uk/~adam/type-inference/

Two kinds of problems

Hindley-Milner type inference

A-calculus with let-definitions
Parametric polymorphism

let f:=Ax.x in f f

First-order unification

Solves equations between types
a->a=(B->pB)-y

http://personal.cis.strath.ac.uk/~adam/type-inference/

Traditional contexts

Contexts explain term variables

[f:a-a,t:B—-P

http://personal.cis.strath.ac.uk/~adam/type-inference/

Traditional contexts

Contexts explain term variables

Type variables float in space

O
&£

L f:a->a,t:B—-P

Traditional contexts

Contexts explain term variables

'ype variables float in space

"'hey are given meaning by substitution

http://personal.cis.strath.ac.uk/~adam/type-inference/

Type variables in the context

We add type variables to the context

[, f:ro = q, t:B-P

Type variables in the context

We add type variables to the context

a=?f:a->o,B=2,1t:B-P

Type variables in the context

We add type variables to the context

Give them meaning by definition

Type variables in the context

We add type variables to the context
Give them meaning by definition
Work in the induced equational theory

Explicitly scoped substitution in triangular form

[La=2?2f:a-a,B=T,t:B-P

Declarations and judgments

Declaration Judgment
o= ? [o=«
=T [Fa=T

Example of unification

To infer the type of the application
ft
we have to solve the unification problem

a-sa=(R->p)-y
where Y Is a fresh type variable

Unification algorithm

unify :: Type = Type — StateT Context Maybe ()

Unification algorithm

unify :: Type = Type — Context - Maybe Context

Unification in the context

Unification in the context

Unification in the context

Unification in the context

Unification in the context

Unification in the context

Unification in the context

Unification in the context

Unification in the context

Unification in the context

Q

Unification in the context

Solution strategy

Refine context in small steps to solve problem

Easy to verify that each step is sound
Minimal commitment at each step
Why does this give most general solutions?

http://personal.cis.strath.ac.uk/~adam/type-inference/

Information increase

An information increase O : [C A is

a substitution from type variables of I to types of A

such that every declaration in '
holds as a judgment in A (under the substitution)

If a:==1T € I then A+ O(a = 1)

We only use the identity substitution,
but are general with respect to any substitution

http://personal.cis.strath.ac.uk/~adam/type-inference/

Examples of information increase

Adding fresh variables
[E INa=?2,p=7?

Defining a previously undefined type variable

[,a=72? E [,a=T

Substituting out a definition
[t/a] : F,a=1,B=a C IB=r1

Stability

A judgment is stable if it is preserved by
information increase

“Once solved, always solved”

Stability by construction: context access just
looks up facts about variables

Minimal-commitment solutions to
stable problems are most general

http://personal.cis.strath.ac.uk/~adam/type-inference/

Type inference

infer ;. Term — StateT Context Maybe Type

Type inference

infer :: Term = Context = Maybe (Type, Context)

Type inference: term variables

X:VapB.a-[pB-a c r

Contexts give type-schemes to term variables

Type inference: term variables

I — xasVaB.a-»B-a

Instantiate type-scheme with fresh variables

Type inference: term variables

[, o =7 — xaVB.a-pB-a

Instantiate type-scheme with fresh variables

Type inference: term variables

[,a=?B=?2F x:ad=p >

Instantiate type-scheme with fresh variables

Generalisation

How to generalise types in let-expressions?
Traditionally, compare sets of free variables

ArFe 7' A,U{z:o}te:T

AFlet z:=é ine: T

o = gen(A, ")

Vot (FV(T)\ FV(A) =

- {ar,--- ,an})
gen(A, 1) = {T (FV(T)\ FV(A) =0)

http://personal.cis.strath.ac.uk/~adam/type-inference/

Generalisation

Structure on type variables makes it easy

'Skim off' type variables from the local,
unconstrained end of the context

Use a marker to record where to stop

Unification may move variables past the marker

http://personal.cis.strath.ac.uk/~adam/type-inference/

Type inference: let expressions

To infer the type of let expressions:
let y=11In e

Place a marker in the context

Infer the type of the definition t

Generalise over type variables

Extend the context with a type-scheme for y

Infer the type of the body e

Type inference: let expressions

[— let f=Ax.x in f f:?

Type inference: let expressions

[; = let f=Ax.xin f f:?

Place a marker ; in the context

This records where to stop generalising

Type inference: let expressions

[— AX.X:?

Infer the type of the let-definition

Type inference: let expressions

[;a:=7 — AX.X:10 = O

Infer the type of the let-definition

Type inference: let expressions

[;a:=7 — AX.X:10 = O

Generalise back to the marker

Type inference: let expressions

[— AX.Xx=Voa.o-a

Generalise back to the marker

Type inference: let expressions

[f:Va.a-a — ff:?

Assign type-scheme to the let-bound variable

Infer the type of the let-body

Giving up some freedom

Typing for let expressions is hon-compositional

We must restrict the information increase
relation so terms have principal types

Forbid assignment of more general types to
variables in the context

[x:a E MNx:Va.a

http://personal.cis.strath.ac.uk/~adam/type-inference/

What have we achieved?

A methodology for problem solving in contexts

Connected soundness and generality of
algorithms for problem solving

More intuitive account of generalisation

http://personal.cis.strath.ac.uk/~adam/type-inference/

How to solve problems in contexts

Define properties of variables

Define judgments: stable by construction
Show solution steps are information increases
Restrict freedom so unigue solutions exist

Minimal commitment yields principal solutions

http://personal.cis.strath.ac.uk/~adam/type-inference/

Future directions

Formal correctness proof?
Investigate more complex type systems
Undecidable constraint systems

Represent syntactic context explicitly (zipper)

http://personal.cis.strath.ac.uk/~adam/type-inference/

http://personal.cis.strath.ac.uk/~adam/type-inference/

References

D. Clement et. al.
A simple applicative language: mini-ML.
LFP '86.

L. Damas and R. Milner.
Principal type-schemes for functional programs.
POPL '82.

J. Dunfield. Greedy bidirectional polymorphism.
ML °09.

References

W. Naraschewski and T. Nipkow.

Type inference verified: Algorithm W in
Isabelle/HOL.

J. Automated Reasoning, 23(3):299-318, 1999.

M. Wand. A Simple Algorithm and Proof for
Type Inference.
Fundamenta Informaticae 10:115-122, 1987.

J. B. Wells. The essence of principal typings.
ICALP 02.

Free monad on derivations

Stability extends substitution on types to
substitution on typing derivations

Derivations have a free monad structure:

Return takes a variable to the derivation that
looks up the variable in the context

Bind is substitution of sub-derivations

http://personal.cis.strath.ac.uk/~adam/type-inference/

http://personal.cis.strath.ac.uk/~adam/type-inference/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53

